Tag: ISS

Cos’è la Meccanica quantistica

Abbiamo detto tempo fa che in fisica esistono oggi due grandi teorie comunemente considerate “vere”, perché in grado di descrivere una grande varietà di fenomeni fisici in maniera precisa e coerente: la Teoria della Relatività e la Meccanica quantistica. Della Relatività abbiamo già parlato nelle scorse newsletter – qui e qui. Di essa sappiamo che descrive bene il comportamento dei corpi e della materia ad alte energie: ci permette di studiare il moto di pianeti e stelle, di lanciare satelliti e navicelle spaziali, di comprendere il funzionamento dell’universo. È arrivata addirittura a predire, con sessant’anni di anticipo, l’esistenza delle onde gravitazionali.
Eppure ci sono ambiti dove la Relatività fallisce: se si studiano i processi nucleari o subnucleari, il comportamento microscopico delle molecole, le interazioni tra le particelle, la struttura della materia, la Relatività è muta. A queste scale entra in gioco la Meccanica quantistica.

Di cosa parliamo
– che cos’è la Meccanica quantistica
– alcuni esempi (già fatti)
– cosa dice la Meccanica quantistica
– cose che la Meccanica quantistica sa
– il problemone
– domande e risposte
– pillole della settimana

Cos’è la Meccanica Quantistica
La Meccanica quantistica è una teoria dell’infinitamente piccolo. Ancora una volta, come è accaduto con la Relatività, dovremo abbandonare molti pregiudizi per apprezzarla, perché la natura non si comporta come ci aspettiamo: esplorando il mondo microscopico – o a scale inferiori – si osservano fenomeni bizzarri che non sono spiegabili dal senso comune, né dalla Meccanica di Newton, che studiava la materia come se fosse fatta di piccole palline che si scontrano. Come vedremo, le particelle che compongono la materia non si comportano per niente come palline. Non sempre, almeno.

Perché “quantistica”
L’aggettivo quantistica, come abbiamo già visto, deriva dalla parola quanto. Ci si era accorti studiando l’effetto fotoelettrico (ci arriviamo) che l’energia non viene trasmessa in maniera continua da un corpo a un altro, ma attraverso dei piccoli pacchetti energetici. A questi pacchetti venne dato il nome di quanti. I primi quanti scoperti furono i quanti di luce, ossia i fotoni, che sono quindi pacchetti di energia elettromagnetica. Ritornando al discorso di prima, questi fotoni a volte si comportano come delle palline, altre volte no.

Alcuni esempi (già fatti)
In che senso le particelle, come ad esempio i fotoni, non si comportano come piccole palline? Un esempio che abbiamo già incontrato è quello di un elettrone che si dirige verso una doppia fenditura. Ne abbiamo parlato un paio di settimane fa.
Riassumendo. Se spariamo un elettrone contro due fenditure molto vicine, la Meccanica di Newton ci dice – così come il nostro intuito – che l’elettrone sceglierà di passare o in una fenditura o nell’altra. Un po’ come una pallina che cade nel flipper, che a volte passa a sinistra di ostacolo, a volte a destra con una probabilità del 50%. Sparando tanti elettroni verso le fenditure ci aspettiamo quindi che metà degli elettroni passino dalla fenditura di sinistra, metà da quella di destra, raccogliendosi in due punti su una lastra fotografica posta oltre le fenditure.
Come abbiamo visto, non funziona così: gli elettroni, anche se sparati uno alla volta, si dispongono oltre le fenditure creando una figura di interferenza. Come detto l’altra volta, l’unico modo per interpretare questo fenomeno è accettare che in questo caso gli elettroni – e in generale le particelle – non si comportino come palline, ma come onde. Arrivati alle fenditure, le attraversano entrambe contemporaneamente, un po’ come un’onda del mare che passa da due boccaporti vicini.

interferenzaonde

 

L’esperimento della doppia fenditura non è l’unico caso in cui la natura si comporta in modo bizzarro. Altri fenomeni, come il famoso effetto fotoelettrico, scoperto nel 1887, non erano spiegabili dalla Meccanica di Newton o dall’elettromagnetismo di Maxwell. Anche stavolta trovate tutto qui.

Cosa dice la Meccanica quantistica
Se le particelle a volte si comportano come onde, allora la Meccanica di Newton non va bene per descriverle. Serve una nuova Meccanica che tenga conto del loro comportamento anomalo, ossia servono delle nuove leggi fisiche.
Chiaramente non posso insegnarvi la Meccanica quantistica. Avreste bisogno di  conoscenze matematiche avanzate e mesi di studio. Però possiamo elencare quali sono i principi cardine di questa teoria, tentando di capirne il significato in maniera un po’ rozza. Per qualsiasi dubbio, scrivetemi.

La dualità onda particella
Della dualità onda particella abbiamo già parlato. La Meccanica quantistica afferma che tutte le particelle – e quindi tutti i corpi, – in determinate circostanze si comportano come onde. È la famosa legge di De Broglie, che però ci dice anche che non è tecnologicamente possibile osservare la natura ondulatoria dei grandi corpi (grandi quanto? Eh, questo è un problemone. Ci torniamo). Però ci riusciamo per corpi piccoli, come ad esempio gli elettroni.

Il principio di indeterminazione di Heisenberg
Il principio di indeterminazione di Heisenberg dice che non è possibile conoscere con precisione arbitraria la posizione e la velocità di una particella. È una questione molto complicata, che ha lasciato perplessi i fisici per molto tempo e che riguarda il concetto di misura. Se si misura con alta precisione la posizione di una particella, non si è più in grado di determinare la sua velocità e viceversa. Ad esempio se volessimo sapere con precisione qual è la posizione di un elettrone dovremmo provare a colpirlo con un fotone ad alta energia. Durante l’urto, però, l’energia viene trasferita all’elettrone e ne perturba la sua velocità, che quindi non possiamo misurare con precisione.
L’esempio che vi ho fatto è un po’ rozzo, ma rende l’idea delle difficoltà che si incontrano quando si vuole studiare la natura nel piccolo (sì, ma quanto piccolo? È il problemone di prima). Siamo abituati a misurare le quantità fisiche usando degli oggetti (un metro, un termometro, …) e generalmente questi oggetti non disturbano il sistema che stiamo misurando. Quando si studia l’infinitamente piccolo diventa più difficile capire cosa significa “misurare” e, soprattutto, l’atto di misura può influenzare sensibilmente il sistema che stiamo studiando.
Vale la pena dire che il principio di Heisenberg è un po’ più generale di come l’ho presentato qui sopra e che, nelle formulazioni moderne della Meccanica quantistica, è un teorema e può essere quindi dimostrato.

La funzione d’onda
Siccome non possiamo misurare con qualsiasi precisione alcune proprietà delle particelle – come la posizione e la velocità – siamo costretti a cambiare approccio: se non possiamo dire “la particella è qui e viaggia a questa velocità”, possiamo però dire qual è la probabilità di trovare una particella in una certa posizione o a una certa velocità. Questa descrizione probabilistica dello stato fisico di una particella è chiamata funzione d’onda. Ad esempio nel caso dell’esperimento della doppia fenditura, la funzione d’onda ci dice che la probabilità che la particella passi nella fenditura di sinistra è il 50% – che è un modo un po’ meno rozzo di dire che la particella passa da entrambe le fenditure. Chiaramente quello che adesso sembra solo un gioco di parole ha in realtà un preciso significato matematico, che però non indaghiamo oltre. Ci basta sapere una cosa: questa idea della funzione d’onda ha risolto parecchi problemi.

Cose che la Meccanica quantistica sa
Senza addentrarci nella fisica delle particelle, o in effetti quantistici esotici come l’entaglement (ne parleremo), la Meccanica quantistica è in grado di spiegare una quantità enorme di fenomeni. Dal funzionamento delle chiavette USB alla risonanza magnetica, questa Teoria ha trovato infinite applicazioni tecnologiche. Pensate che tutta la chimica moderna si basa sui principi della Meccanica quantistica, lo studio delle funzioni d’onda e di come queste cambiano quando si formano i legami chimici.

Il problemone
Nel corso della newsletter abbiamo visto che la Meccanica quantistica funziona nel piccolo, ma non nel grande. Ma piccolo quanto? Purtroppo non esiste ancora un modo per definire con precisione il limite di validità della Teoria. Questo, capirete anche voi, è un problema sia dal punto di vista pratico che da quello concettuale. Quando va usata la Meccanica quantistica e quando la possiamo approssimare usando le formule della Relatività? E se non riusciamo a capire dove inizia e dove finisce, non è che ci sfugge qualcosa?
I fisici da anni stanno provando a rispondere a queste domande, nel tentativo di trovare una teoria unica che inglobi la Meccanica quantistica e la Teoria della Relatività di Einstein, ma ancora non ci sono riusciti.

Domande e risposte
Alcune domande che mi avete fatto e alcune risposte.

Perché c’è tutto questo clamore per Samantha Cristoforetti? Che ha di speciale?
Samantha Cristoforetti è stata la prima donna italiana selezionata dall’Agenzia Spaziale Europea come astronauta. Questo forse basta a giustificare il grande interesse che ha suscitato, ma certo non spiega l’enorme copertura mediatica. Samantha, oltre ad avere i suoi account social come gli altri astronauti, ha cogestito un blog sulla sua missione, effettuato molti collegamenti tv, risposto alle domande degli appassionati. Era inoltre disponibile una webapp (Friends in space) per salutare Samantha al passaggio della ISS e da cui lei poteva rispondere con un click. E poi, ovviamente, è stato fatto il docufilm Astrosamantha.
Il tutto rientra in un progetto per spronare quelle ragazze che potrebbero intraprendere una carriera scientifica, ma non lo fanno perché sono senza un modello di riferimento. Chi meglio di Samantha, ingegnere, pilota, astronauta, poteva fare da testimonial per una campagna di questo tipo?

Hai detto che la cometa Catalina sta attraversando il Sistema solare e non tornerà mai più. Dove andrà a finire?
Continuerà probabilmente a vagare nello spazio. La sua orbita l’ha portata fuori dal Sistema solare. Forse si scontrerà con qualche altro oggetto celeste – magari un giorno verrà attirata da una stella diversa dal Sole – ma se accadrà non sarà tanto presto. Lo spazio è piuttosto vuoto.

A cosa serve la pura osservazione di fenomeni fisici, come quella delle onde gravitazionali, se non porta innovazioni tecnologiche?
È vero, la scoperta delle onde gravitazionali non ha una ricaduta tecnologica diretta, ma ci sono già molte ricadute tecnologiche indirette: per arrivare a compiere quegli esperimenti sono stati sviluppati sistemi di ultra vuoto, laser ad altissima coerenza, camere di risonanza a elevato rendimento, materiali innovativi e unici nel loro genere. Senza contare lo sviluppo di complicati modelli di analisi numerica, che potranno essere utilizzati anche in altri ambiti, un giorno. Inoltre, come ogni scoperta, non sappiamo dove ci porterà. L’osservazione delle onde gravitazionali ci permetterà di studiare una parte di universo che fino ad oggi era rimasta nascosta e non sappiamo quali conseguenze avranno questi studi. Ci possono volere anni, decenni, forse secoli, ma la conoscenza porta sempre al progresso tecnologico, prima o poi.

Pillole della settimana
Alcune notizie di questi giorni, brevi.

L’equinozio di primavera, un giorno prima
Quest’anno l’equinozio di primavera è arrivato il 20 Marzo, non il 21. C’entrano i moti millenari della Terra e il modo in cui calcoliamo il calendario. Non mi dilungo: hanno detto tutto su Gravità Zero.

ISS: c’è chi viene e c’è chi va
Dopo il rientro di Scott Kelly, Mikhail Kornienko e Sergey Volkov, è partita la Expedition 47 verso la ISS con gli astronauti Jeff Williams, Oleg Skripochka e Alexey Ovchinin. Qui il video.

Per approfondire
– La Meccanica quantistica, raccontata da Roberto Battiston, presidente dell’ASI (video)
– Una rassegna di articoli sulla Meccanica quantistica, che integrano quello che vi ho detto (EDIT: mi chiedono che avvallo i contenuti del sito linkato che parlano di olismo e medicina non convenzionale. No, ma gli articoli di Antonella Ravizza – come quello che ho linkato – sono prettamente scientifici)
– Quark, con i disegnini. Che bello che era (video breve)
– La differenza tra la Meccanica quantistica e la Meccanica classica, spiegata da Carlo Rubbia (video)

Juno, DUNE, ExoMars e Scott Kelly

Buongiorno a tutti,
parto correggendo un paio di sviste della scorsa newsletter. A un certo punto ho detto che il segnale rilevato da LIGO è stato generato da due masse in collisione e in rotazione a circa 150 mila Km orari. Ovviamente sono 150 mila Km al secondo, circa la metà della velocità della luce. In chiusura poi ho scritto che la potenza emessa dalla collisione è stata pari a quella di tutte le stelle dell’universo. In realtà è almeno dieci volte superiore.
Sviste a parte, mi scuso anche per la lunghezza record della mail, ma l’argomento era troppo importante per non essere approfondito. Non ho nemmeno detto tutto, a dire il vero.
Proprio per riposarci un po’ dopo la maratona della settimana scorsa (per chi si è perso e per chi non c’era, ho fatto anche un livetweet della conferenza stampa sulla scoperta delle onde gravitazionali), ho pensato di non mettere in questa mail un argomento di fisica: parliamo invece di varie notizie di questi giorni.
Dalla prossima settimana ripartono però le lezioni. Salvo altre richieste, pensavo di riprendere da un argomento interessante: la dualità onda-particella.

Di cosa parliamo oggi
– la missione Juno
– DUNE, un esperimento per rilevare i neutrini
– il rientro sulla Terra di Scott Kelly
– ExoMars comincia il suo viaggio verso Marte
– un retroscena sulle onde gravitazionali

Giunone e Giove, presto insieme
Juno è una missione della NASA per studiare più da vicino il pianeta Giove. Il nome è evocativo: Giunone (Juno, in inglese) era la dea moglie di Giove nella mitologia romana.
Si tratta essenzialmente di una sonda che orbiterà intorno al pianeta per capire le sue proprietà attraverso la misurazione della massa, delle dimensioni del nucleo, del campo gravitazionale e di quello magnetico. Verrà anche studiata la composizione dell’atmosfera e il suo clima.
Ad oggi la sonda Juno ha viaggiato per più di 2,7 miliardi di Km. Il percorso di una sonda nel Sistema Solare, infatti, è solitamente molto tortuoso e sfrutta la gravità degli altri pianeti come effetto fionda: quando la sonda passa vicino a un pianeta, viene attratta dalla forza di gravità, cambiando la sua direzione e la sua velocità. È un modo pratico per accelerare o decelerare senza consumare carburante, minimizzando quindi il consumo di energia.

effettofionda

Effetto fionda gravitazionale (Credit: Y tambe, CC BY SA 3.0)

Nella figura qui sotto vedete quanto è stato complicato il viaggio di Juno. L’ellisse blu è l’orbita della Terra, quella rossa è Marte, quella gialla è Giove. Il percorso di Juno è quello bianco. Occhio che le date sono storte: mm/gg/aaaa.

Il percorso di Juno nel Sistema Solare

(Credit: NASA/JPL)

La sonda Juno si trova oggi a circa 700 milioni di Km da noi e per inviarle comunicazioni ci vuole più di mezz’ora: i segnali che inviamo, viaggiando alla velocità della luce, ci mettono 37 minuti a raggiungerla. Dovrebbe arrivare presso Giove il 4 Luglio di quest’anno.

See the world spin round in DUNE Buggy
Continua la progettazione di DUNE (Deep Underground Neutrino Experiment), un esperimento all’avanguardia per studiare la fisica dei neutrini e il decadimento del protone.
I neutrini sono particelle molto sfuggenti. Sappiamo oggi, grazie alla scoperta delle oscillazioni del neutrino – per chi sa cosa sono – che i neutrini hanno una massa, anche se molto piccola. Tuttavia interagiscono molto raramente con le altre particelle e lo fanno solo tramite due delle quattro forze fondamentali: la forza debole e la forza gravitazionale. È quindi molto difficile studiarli. Per avere un’idea di quanto sono difficili da rilevare, basta immaginare che ogni secondo passa attraverso il nostro corpo qualcosa come un miliardo di neutrini. Di questi, però, pochissimi interagiscono con le particelle che ci compongono: solamente qualche migliaio durante tutta la nostra vita. Gli esperimenti per rilevarli sono quindi molto complessi e delicati.
Per rilevare i neutrini, DUNE sarà dotato di una camera contenente 70 mila tonnellate di Argon liquido. I neutrini, interagendo con le molecole di Argon, innescano delle reazioni subnucleari che vengono tracciate da dei rilevatori. Più o meno come in questa animazione.

 

La rilevazione dei neutrini
Data la grandezza dell’esperimento, è stato necessario sviluppare nuove e più sofisticate tecnologie rispetto a quelle utilizzate dai rilevatori più piccoli. Proprio per questo, prima di procedere alla costruzione di DUNE, gli scienziati vogliono essere sicuri che il gioco valga la candela. In questi giorni sta cominciando l’acquisizione di dati scientifici utilizzando un prototipo di DUNE, chiamato DUNE Buggy (Il nome, a noi italiani, dovrebbe ricordare qualcosa o quantomeno suonare familiare).
DUNE Buggy ha una camera contenente solo 35 tonnellate di Argon (non 35 mila), ma è comunque uno dei più grandi rilevatori di neutrini all’Argon liquido mai costruiti.
I neutrini per l’esperimento DUNE sono prodotti accelerando dei protoni e facendoli scontrare contro dei pezzi di grafite o di altri materiali. Dallo scontro nascono particelle secondarie che, decadendo, producono neutrini. I neutrini poi viaggiano sottoterra fino a raggiungere il rilevatore. Dato che i neutrini praticamente non interagiscono con le altre particelle, non serve un tunnel. Questo breve cartone animato spiega il processo di produzione dei neutrini. È in inglese, ma è carino.

Un anno nello spazio
Il primo Marzo torneranno sulla Terra gli astronauti Scott Kelly e Mikhail Kornienko. Kelly e Kornienko hanno passato un intero anno a bordo della Stazione Spaziale Internazionale per permettere agli scienziati di studiare i cambiamenti del corpo umano durante una prolungata permanenza nello spazio.

Scott Kelly (NASA) e Mikhail Kornienko (Roscosmos) (Credit: NASA)

Scott Kelly (NASA) e Mikhail Kornienko (Roscosmos) (Credit: NASA)

La missione, chiamata One-Year Mission, è uno dei tanti tasselli necessari per riuscire in un prossimo futuro a mandare degli uomini su Marte. Una missione su Marte durerebbe circa tre anni: nove mesi per andare, nove mesi per tornare e il tempo restante per visitare il pianeta. È importante quindi capire come reagisce il corpo durante un viaggio così lungo in condizioni di microgravità e quali contromisure possono essere prese per ridurre i rischi dell’equipaggio. Non è la prima volta che degli esseri umani passano un intero anno nello spazio. Negli anni ’80 e ’90 ben quattro astronauti hanno vissuto per più di dodici mesi sulla Stazione Spaziale russa Mir, che oggi non esiste più. Tuttavia, a differenza di allora, esistono metodi di indagine molto più approfonditi per studiare il comportamento del corpo umano, come ad esempio la genetica.
Un altro aspetto unico di questa missione è che Scott Kelly ha un gemello monozigote, Mark. Mark è un ex astronauta e, dato che ha lo stesso DNA di Scott, verrà utilizzato come campione di controllo per capire meglio cosa è cambiato nel corpo di Scott.

 

kellytwins

Mark Kelly e Scott Kelly (Credit: NASA)

Missione ExoMars, si parte
ExoMars è un progetto dell’Agenzia Spaziale Europea e dell’ente spaziale russo Roscosmos per esplorare Marte ed è composto da due missioni. Il 14 Marzo verrà lanciata la prima missione, formata da un satellite, il Trace Gas Orbiter (TGO), dotato di strumenti per l’analisi dei gas atmosferici e dal lander Schiaparelli, che servirà per testare la tecnologia necessaria per l’ingresso nell’atmosfera e l’atterraggio sul suolo marziano. TGO e Schiaparelli viaggeranno uniti fino al 16 Ottobre, poi il lander si staccherà e comincerà la sua discesa verso la superficie del pianeta. Nel tweet qui sotto vedete degli operatori che riforniscono i serbatoi di TGO.

 

 

Un retroscena sulle onde gravitazionali
L’articolo principale sulla scoperta delle onde gravitazionali – lo trovate qui – è stato preparato in assoluta riservatezza e in maniera impeccabile: è un articolo estremamente chiaro, quasi a livello divulgativo, pensato non solo per gli addetti ai lavori, ma anche per tutti i giornalisti scientifici e i divulgatori che avrebbero dovuto spiegare la notizia al grande pubblico. Penso che la stragrande maggioranza dei fisici, anche quelli che non sono specializzati nel settore, possa capirne l’intero contenuto. Non è una cosa scontata. Solitamente gli articoli scientifici sono molto tecnici e di difficile lettura.
Per dare un’idea di quanto è stato grande l’impatto di questo articolo sulla comunità scientifica – e non solo – basta questo aneddoto. Physical Review Letters, la rivista che ha pubblicato l’articolo, utilizza solitamente quattro server per gestire il traffico sul suo sito. Immaginando che ci sarebbe stato molto traffico, la sera prima della pubblicazione venne deciso di aggiungere altri due server di supporto. Appena l’articolo fu pubblicato, verso le 16:30 ora italiana, gli accessi erano 10 mila al minuto e il sito andò giù. Vennero quindi aggiunti altri quattro server ad alta capacità, ma il traffico era comunque così alto che alle 18:30 furono aggiunti altri dieci server, per un totale di venti. Impressionante.

Feedback
Come stanno procedendo le newsletter? Troppo lunghe o difficili? La cadenza settimanale va bene? E soprattutto, avete qualche argomento che vi sta a cuore? Scrivetemi a spacebreak [at] francescobussola.it e fatemi sapere, soprattutto se avete suggerimenti.
Se vi piace questa newsletter potete farla conoscere a un amico inoltrando la mail o suggerendogli di iscriversi.

Per approfondire
– Un articolo molto bello di Gravità Zero sulle onde gravitazionali
– Le dieci cose da sapere sulla One-Year Mission (inglese)
– Il sito dell’Human Research Program, di cui fa parte il Twins study dei gemelli Kelly (inglese)
– Cosa sono le oscillazioni del neutrino

La Relatività Generale e le missioni su Marte, un giorno

Come promesso oggi parliamo della Relatività Generale, la parte della Teoria di Einstein che considera anche la gravità. La scorsa mail è stata corposa, oggi ci andiamo piano.
Se avete curiosità potete scrivermi a spacebreak [at] francescobussola.it

Di cosa parliamo
– la Teoria della Relatività Generale
– pillole della settimana

La Teoria della Relatività Generale
Come abbiamo visto la volta scorsa la Relatività Speciale è basata su poche buone idee:
1 – Le leggi fisiche sono le stesse per osservatori con velocità diverse;
2 – La velocità della luce nel vuoto è una costante, ed è uguale per ogni osservatore;
3 – Lo spazio e il tempo non sono più concetti distinti, ma sono fusi in un unico concetto chiamato spaziotempo;
4 – Non valgono più le leggi inventate da Galileo. Al loro posto ci sono delle nuove leggi, chiamate trasformazioni di Lorentz che “mescolano” lo spazio e il tempo.
Le conseguenze di queste idee sono interessanti e inaspettate:
– La misura delle distanze è relativa, ossia cambia in base alla velocità dell’osservatore;
– Anche la misura degli intervalli di tempo è relativa.
Questi due fenomeni, chiamati contrazione delle lunghezze e dilatazione del tempo, accadono veramente e sono stati ampiamente verificati dagli esperimenti.
Inoltre ci sono altre conseguenze, come ad esempio la famosa legge E=mc2 o il fatto che nessun corpo può raggiungere e superare la velocità della luce.
Per chi si è perso e per chi non c’era, qui c’è la newsletter della settimana scorsa.

Manca la gravità
Nella Relatività Speciale manca però un ingrediente, la gravità. Tutta la Teoria è infatti valida quando gli effetti della gravità sono trascurabili o non presenti: è quindi un modello, una semplificazione utile in alcuni casi, ma che non dice nulla a proposito della forza di gravità, che solitamente è descritta da Newton. Ma sappiamo anche che Newton non funziona. Che si fa? Non potremmo accontentarci di avere un modello che in qualche modo funziona, magari correggendo un po’ la teoria di Newton giusto per far tornare i conti? Perché bisogna per forza includere la gravità nella Relatività?  Essenzialmente per completezza. Ai fisici piace cercare delle leggi semplici che descrivano la più vasta gamma di fenomeni naturali. Una teoria sul movimento dei corpi, come è la Relatività, che non descrive la gravità – il fenomeno fisico che conosciamo da più tempo – è in un certo senso “zoppa”.
Comunque sia, in una delle prossime mail vi parlerò del paradosso dei gemelli e sarà evidente che in effetti nella Relatività Speciale si nota che manca qualcosa.

Come introdurre la gravità
Abbiamo detto tempo fa che la forza di gravità, per Newton, dipendeva dalla distanza tra i corpi in gioco. Siccome però per Einstein la misura della distanza è un concetto relativo, quella legge non va più bene. Come si può introdurre perciò la gravità nella Relatività?
Per farlo dobbiamo ricordarci di come Einstein descrive lo spazio e il tempo: non sono entità separate, ma sono unite in un unico concetto chiamato spaziotempo. Lo spaziotempo è in sostanza una specie di struttura su cui poggiamo e senza di essa non ci sarebbe l’universo.
La faccio semplice. Provate a immaginare un universo completamente vuoto, senza galassie, stelle, pianeti, polveri. Ecco, quello sarebbe lo spaziotempo descritto dalla Relatività Speciale. Dal punto di vista geometrico possiamo pensarlo come un lenzuolo steso orizzontalmente. Ogni punto del lenzuolo indica un evento, ossia un punto dello spazio ad un certo istante di tempo. In ogni punto però non accade niente e, come detto, non c’è niente. Questo è il motivo per cui non c’è gravità.
Cosa accade però quando appoggiamo una palla sul lenzuolo? Il lenzuolo ovviamente fa una conca dove viene messa la palla, no? Ecco, questo è l’effetto della presenza di un pianeta (o di una stella, o di un qualsiasi corpo) sullo spaziotempo: la struttura su cui “poggia” il corpo si deforma. Lo spaziotempo quindi non è più piatto, come poco prima, ma è curvo. Ovviamente ogni pallina che appoggiate sul lenzuolo – sia essa una stella, un pianeta, un asteroide, un uomo, un gatto o un temperamatite – curverà lo spaziotempo. Più l’oggetto è grande (o meglio, più la sua massa è grande), più la conca sarà profonda. Se poi l’oggetto si muove, la conca si sposterà insieme ad esso.
Per capire cosa c’entra questo con la gravità basta immaginare cosa accade a una pallina quando finisce nella conca di un’altra pallina, come nella seguente animazione.


Come vedete quando una pallina finisce nella conca di una pallina molto più pesante, ci cade dentro. Vedete il movimento che fa? Sembra quello di un asteroide che cade su un pianeta. La curvatura dello spaziotempo dunque è il modo con cui viene descritta la gravità nella Teoria della Relatività.

Perché non la vediamo?
Non vediamo la curvatura per il fatto che lo spaziotempo non è una struttura tangibile. Il nostro punto di vista è molto simile a quello della telecamera in verticale nell’animazione: a noi lo spaziotempo appare “piatto”. Ci accorgiamo però degli effetti causati della curvatura.

Quali sono gli effetti della curvatura?
Beh, innanzitutto vediamo i corpi che si attirano: i pianeti orbitano attorno al Sole, gli oggetti cadono verso la Terra e così via. Insomma, percepiamo la gravità. Ma ci sono altri effetti. Se lo spaziotempo si piega, pensateci, significa che lo spazio e il tempo vengono deformati e le loro misure cambiano. Non stiamo parlando della dilatazione del tempo e della contrazione delle lunghezze viste l’altra volta. Parliamo di ulteriori effetti aggiuntivi dovuti alla gravità ed esistono delle formule per descriverli. L’esperimento di Hafele e Keating di cui abbiamo parlato dimostrò anche questi effetti aggiuntivi.
Se siete scettici fate bene – lo scetticismo in mancanza di prove è una buona abitudine – e soprattutto siete in buona compagnia. Negli anni ’70 il Dipartimento di Difesa statunitense cominciò a costruire il sistema GPS, il famoso sistema di localizzazione basato sui satelliti. Per funzionare correttamente i satelliti dovevano essere sincronizzati, altrimenti avrebbero segnalato in maniera sfasata le posizioni. All’epoca i fisici spiegarono ai militari che per sincronizzare i satelliti bisognava tenere conto delle correzioni agli orologi previste sia dalla Relatività Speciale che da quella Generale. I militari non ci credevano. Indovinate chi aveva ragione.

C’è altro?
Sì, una cosa importantissima e difficile da credere. Abbiamo visto che le palline quando cadono in una buca ci finiscono dentro girando intorno al centro. E che questo è come la Relatività descrive la gravità. Ma c’è una cosa in più: anche ai raggi di luce accade a stessa cosa: I raggi di luce infatti si propagano seguendo la griglia dello spaziotempo. Quando questa si deforma, però, si modifica anche il loro percorso. Perciò quando un raggio di luce passa vicino a un pianeta, a una stella o a una galassia, modifica la sua traiettoria, più o meno come in questa immagine.

light_bending
Questo fenomeno si chiama lente gravitazionale. Vi spiego l’immagine. La stella, quella in alto a destra, si trova nascosta dietro il Sole e sarebbe impossibile vederla dalla Terra. La sua luce però finisce nella conca gravitazionale del Sole, perciò il raggio luminoso curva la propria traiettoria e raggiunge comunque la Terra (linea gialla). Noi quindi riusciamo a vedere la stella, ma la vediamo come se fosse più a sinistra (linea rossa). Insomma, grazie a questo effetto possiamo vedere dei corpi celesti nascosti dietro qualche ostacolo.
Volete una prova? Questa foto è la famosa croce di Einstein, un corpo celeste nella costellazione di Pegaso. Quella al centro è una Galassia e le luci accanto sono quattro immagini apparenti di un unico Quasar che si trova dietro la Galassia. La luce emessa dal quasar passa in fianco alla Galassia, curva la sua traiettoria e ci raggiunge comunque. Einstein postulò l’esistenza di tali oggetti nel 1915, sessantacinque anni prima della loro scoperta.

lente
Pillole
Alcune notizie di questi giorni, brevi.

I funghi sulla ISS
Sulla Stazione Spaziale Internazionale sono stati coltivate per 18 mesi delle cellule di alcuni funghi particolari che solitamente crescono in Antartide e che sono considerati buoni candidati per “colonizzare” l’ambiente marziano. Li vedete nell’immagine sotto, dove c’è la freccia. Più del 60% delle cellule dei funghi sono sopravvissute, mantenendo stabile il proprio DNA dando prova che la vita può sopravvivere anche in situazioni estreme. Qui gli approfondimenti.

L’esperimento Expose-A (Credit: NASA ESA, ISS)

La navicella Orion
L’Orion MPCV è un veicolo spaziale con equipaggio attualmente in fase di sviluppo da parte della NASA che sarà impiegato nell’esplorazione umana degli asteroidi in vista di un futuro sbarco su Marte. Nonostante i tagli ai finanziamenti il progetto continua. In questi giorni Orion è stato trasportato al Kennedy Space Center a Cape Canaveral con il fighissimo aereo Super Guppy per l’assemblaggio finale. Il prossimo lancio test senza equipaggio è previsto nel 2018.

L’aereo Super Guppy, pronto a trasportare Orion (Credit: NASA)

Il Lussemburgo spara (molto) alto
Il governo del Lussemburgo ha annunciato un ambizioso progetto per diventare “il centro europeo nell’esplorazione e nell’utilizzo delle risorse spaziali”. L’obiettivo è quello di sviluppare le tecnologie e stabilire un quadro normativo per poter estrarre minerali dagli asteroidi. Chissà.

Una passeggiata spaziale
Ieri gli astronauti Russi Malenchenko e Volkov hanno fatto una passeggiata spaziale per attività di manutenzione della ISS. Durante la passeggiata hanno recuperato l’esperimento europeo Expose-R2, un laboratorio di campioni biologici simile a quello utilizzato per i funghi di cui abbiamo parlato. Ecco Volkov al lavoro.

L’astronauta Volkov durante la passeggiata spaziale (Credit: NASA, ISS)

Feedback
Ti è piaciuta questa mail? Falla conoscere a un amico.

Per approfondire
– Il fenomeno della lente gravitazionale rivisto a Dicembre dello scorso anno
– La storia delle lenti gravitazionali (inglese)
– La Relatività Generale, in inglese, coi disegnini (video)
– Gli ultimi appunti di Einstein, scritti poco prima di morire
– Cosa sono le onde gravitazionali (fumetto e video in inglese)

1 2 3