Tag: bosone di Higgs

La superconduttività

Ciao! Come va l’estate? La scorsa volta ci siamo lasciati con un sondaggione su Space break al quale potete ancora rispondere. Chi non l’ha fatto ha l’ultima occasione. In particolare sarebbe bello che diciate la vostra sulla cadenze delle newsletter: le preferite settimanali, bisettimanali o mensili? E in che giorno della settimana? Sondaggione, appunto.
Le newsletter ripartiranno con una certa regolarità a inizio settembre e ci saranno delle novità. Siate pronti.
Oggi invece parliamo della superconduttività e della teoria BCS. In fondo trovate anche alcune notizie di queste settimane.
Per scrivermi l’indirizzo è sempre spacebreak [at] francescobussola.it.

Di cosa parliamo oggi
– resistività e conducibilità elettrica
– i superconduttori
– la teoria BCS
– pillole del mese

Resistività e conducibilità
Non tutti i materiali conducono la corrente elettrica allo stesso modo. Sappiamo un po’ tutti che la gomma è un buon isolante, mentre è più facile prendere la scossa utilizzando degli oggetti metallici. È il motivo per cui i fili della corrente sono fatti quasi sempre di rame – non è il miglior metallo da usare, ma è uno dei meno costosi – mentre i rivestimenti sono fatti di gomma o plastica.
Ma cosa vuol dire che un materiale conduce la corrente? Sappiamo che la materia è fatta di atomi e che questi atomi hanno una struttura interna, ossia sono composti da un nucleo – che contiene i protoni e i neutroni – e da degli elettroni – delle particelle molto piccole e leggere che ruotano intorno al nucleo (per chi volesse approfondire ne abbiamo parlato qui). Gli elettroni si dispongono attorno al nucleo in particolari strutture, chiamate orbitali atomici. Gli elettroni che si trovano negli orbitali più vicini al nucleo dell’atomo, solitamente se ne stanno lì tranquilli, mentre quelli più esterni – che vengono chiamati elettroni di valenza – hanno a volte la possibilità di sganciarsi dall’atomo e se accade che gli atomi sono legati tra loro in certe configurazioni, questi elettroni riescono a muoversi nel materiale, saltando da un atomo all’altro.
La facilità con cui questi elettroni riescono a muoversi è chiamata conducibilità elettrica: i materiali con un’alta conducibilità, sono dunque chiamati conduttori elettrici.
Tra i migliori conduttori elettrici troviamo appunto i metalli, che grazie alla struttura in cui sono disposti i loro atomi e al fatto che condividono molti elettroni di valenza, oppongono poca resistenza al flusso degli elettroni nel materiale. Per attivare questo flusso di elettroni bisogna applicare una differenza di potenziale elettrico, chiamata anche tensione. Insomma, bisogna fare in modo che gli elettroni nel materiale decidano di andare in una direzione particolare. Otteniamo questo risultato, ad esempio, quando inseriamo una spina in una presa elettrica, che fornisce una tensione di 230 Volt, o quando si collegano con un circuito i due capi di una batteria: gli elettroni si mettono in moto.
Nell’animazione qui sotto vedete i capi di una batteria collegati con la carta metallizzata delle gomme da masticare: la batteria ha una differenza di potenziale tra i due capi, che mette in movimento gli elettroni nel metallo. Il metallo comincia a scaldarsi e infine la carta a cui è incollato brucia.

batteryI capi di una batteria collegati con della carta metallizzata.

Il contrario della conducibilità è la resistività elettrica. Più un materiale è resistivo, meno è un conduttore e viceversa.
Inoltre la capacità dei materiali di condurre l’elettricità dipende dalla loro temperatura. Tendenzialmente, la resistività di un conduttore diminuisce man mano che diminuisce la temperatura – è uno dei motivi per cui molti circuiti elettrici hanno dei sistemi di raffreddamento. Tuttavia la resistività non si annulla mai: buoni conduttori come l’oro, l’argento e il rame hanno una resistività non nulla anche allo zero assoluto (-273,15°C), che è la temperatura più bassa raggiungibile.

I superconduttori
Eppure esistono dei materiali che, a temperature prossime allo zero assoluto, non oppongono alcuna resistenza al passaggio della corrente. Sono i materiali superconduttori.
La superconduttività fu scoperta nel 1911 dal fisico Heike Kamerlingh Onnes mentre studiava un campione di mercurio a temperature prossime allo zero assoluto (Onnes è famoso soprattutto per essere riuscito a creare l’elio liquido – ne abbiamo parlato in questa newsletter). A circa -269°C, la resistività del mercurio al passaggio della corrente diventa improvvisamente nulla: ciò significa che gli elettroni riescono a muoversi nel materiale senza perdere energia, in una specie di “moto perpetuo”. Chi segue le newsletter avrà notato una certa somiglianza con il fenomeno della superfluidità. La superfluità, così come la superconduttività, si presenta in alcune sostanze solo al di sotto di una determinata temperatura, che varia da materiale a materiale.

Quanti superconduttori ci sono?
Dal 1911 a oggi sono stati scoperti molte sostanze in grado di trasformarsi in superconduttori. Tra questi troviamo una trentina di metalli, con temperature di transizione tra i -273°C e i -264°C, varie leghe metalliche o composti più complessi. Esistono ceramiche che diventano superconduttori già a -200°C. Nel 1993 fu scoperta una ceramica in grado di trasformarsi in superconduttore a −135 °C.
La scoperta di materiali superconduttori a temperature più alte favorirebbe il loro utilizzo in campo elettronico: garantirebbero una trasmissione di corrente senza alcuna dispersione di energia. Tuttavia non è ancora stato trovato un superconduttore a temperatura ambiente – e non è detto che lo si troverà mai.

Si possono utilizzare?
L’utilizzo dei superconduttori non è comunque facile, perché in presenza di correnti o campi magnetici elevati il materiale torna allo stato normale. La presenza di campi elettromagnetici, infatti, abbassa la temperatura critica a cui avviene la transizione allo stato di superconduttore. Per trasformare nuovamente il materiale in superconduttore bisogna quindi diminuire ulteriormente la temperatura, ma più è bassa la temperatura, più diventa difficile abbassarla.
I superconduttori sono quindi molto usati in ambito sperimentale, laddove ci sono i fondi e le tecnologie per raggiungere temperature così basse. Al CERN di Ginevra, ad esempio, vengono utilizzati come conduttori di corrente per gli acceleratori di particelle. Esistono però anche alcune applicazioni industriali – come l’installazione di cavi per la conduzione della corrente, la realizzazione di elettromagneti o la costruzione dei magnetometri SQUID (Superconducting Quantum Interference Devices) – e in campo medico, dove i superconduttori vengono utilizzati per la risonanza magnetica nucleare.

L’effetto Meissner-Ochsenfeld
Tra i vari effetti presentati dai superconduttori, il più interessante è forse l’effetto Meissner-Ochsenfeld, scoperto nel 1933. Se si prende un superconduttore, lo si “immerge” in un campo magnetico e si abbassa l’intensità del campo magnetico al di sotto di una certa soglia, si creano sulla superficie del superconduttore delle correnti che inducono, all’interno, un campo magnetico opposto a quello applicato. In sostanza significa che all’interno del superconduttore il campo magnetico si “spegne”.
Questo effetto è quello che permette di ottenere una levitazione magnetica stabile: si prende un superconduttore, gli si appoggia sopra una calamita e poi lo si raffredda fino a raggiungere la temperatura critica. Ecco quello che accade.

superconductor Un magnete, appoggiato sopra un superconduttore raffreddato
con azoto liquido, comincia a levitare.

La teoria BCS
Per spiegare il comportamento dei superconduttori non è sufficiente la fisica classica ed è necessario utilizzare le leggi della Meccanica quantistica. Negli anni cinquanta i fisici Bardeen, Cooper e Schrieffer svilupparono una teoria per descrivere il fenomeno della superconduttività. Come abbiamo già visto in qualche newsletter, in natura esistono due grandi famiglie di particelle, i bosoni e i fermioni. Gli elettroni, le particelle che nei conduttori trasportano la carica elettrica, sono fermioni. La teoria BCS prevede che nei superconduttori gli elettroni si uniscano a formare delle coppie, chiamate coppie di Cooper e che siano queste coppie a trasportare la carica elettrica al posto dei singoli elettroni. Tuttavia queste coppie non si comportano più come fermioni, ma come bosoni, che obbediscono a leggi fisiche completamente diverse e che hanno possibilità di muoversi nel materiale più liberamente.
Pillole del mese
Alcune notizie di queste settimane, in breve.

Nuova particella al CERN? Pare di no
Nei mesi scorsi si era vociferato della possibile scoperta di una nuova particella al CERN. Nuove misurazionisembrerebbero escludere questa possibilità. Il picco rilevato potrebbe essere stata una semplice fluttuazione statistica delle misure. (Cos’è il CERN?)

Il bosone di Higgs, di nuovo
Sempre al CERN è stato nuovamente misurato il bosone di Higgs. I nuovi dati permetteranno di studiare la particella più nel dettaglio. (Cos’è il bosone di Higgs?)

A caccia di asteroidi
La NASA ha approvato la fase di sviluppo dei componenti robotici di ARM (Asteroid Redirect Mission), un progetto che prevede la cattura e il dirottamento di un asteroide di circa 4 metri. Una volta trascinato in un’orbita stabile l’asteroide potrebbe essere visitato da due astronauti utilizzando una capsula Orion.

Una fase di test a grandezza naturale dei componenti robotici di ARM (Credit: NASA)

Una fase di test a grandezza naturale dei componenti robotici di ARM (Credit: NASA)

ER=EPR
Potreste aver letto da qualche parte che il fisico Susskind ha proposto un’equazione che potrebbe risolvere il problema dell’unificazione della Relatività Generale con la Meccanica quantistica. L’equazione recita ER=EPR e afferma che ci potrebbe essere un qualche collegamento fisico e geometrico tra gli wormholes di Einstein e Rosen (i famosi “tunnel spaziotemporali” che si vedono nei film) e il paradosso di Einstein Podolski e Rosen, che riguarda l’entaglement, un fenomeno molto esotico che si incontra in Meccanica quantistica (ne parleremo). L’argomento sembra piuttosto speculativo, soprattutto considerando il fatto che gli wormholes, per quel che ne sappiamo, non esistono. È bene quindi essere prudenti ed evitare toni troppo enfatici. Comunque sia, per chi è curioso, ecco qui il paper di Susskind.
Per approfondire
– La levitazione magnetica nei superconduttori (video in inglese)
– Una registrazione Rai sui superconduttori
– Marina Putti spiega le applicazioni dei superconduttori (video, un po’ tecnico)

Le particelle elementari e il Modello standard

Senza pretese di strafare, oggi parliamo delle particelle elementari. L’altra volta abbiamo visto cosa sono le particelle e cosa significa che si comportano come onde. Non è necessario aver letto la scorsa newsletter per capire quello che vi dico oggi, ma non fa male. Magari può essere utile rileggere quella sulle quattro forze fondamentali.

Di cosa parliamo oggi
– il Modello standard
– i fermioni
– le particelle mediatrici delle forze
– il bosone di Higgs
– i limiti del Modello
– pillole della settimana

Il Modello standard
L’altra volta abbiamo visto che le particelle sono divisibili in due gruppi. Le particelle più semplici, che non possono essere scomposte in altre particelle e che sono i costituenti primi della materia, sono chiamate particelle elementari. I loro composti invece sono dette particelle non elementari.
La teoria fisica che descrive il comportamento delle particelle elementari e dei loro composti si chiama Modello standard. Le particelle studiate dal Modello standard interagiscono tra di loro attraverso le quattro forze fondamentali della natura: la forza elettromagnetica, la forza debole, la forza forte e la forza gravitazionale. Tuttavia il Modello standard include solo tre di queste forze, trascurando la forza gravitazionale. Mi era già capitato di dirvi che la forza gravitazionale è diversa dalle altre – è molto più debole, è descritta dalla Relatività Generale in maniera un po’ originale e non ne sappiamo molto. Proprio per questi motivi i fisici non sono ancora riusciti a costruire una teoria che inglobi tutte e quattro le forze. Il Modello standard, dimenticandosi della forza gravitazionale, non è quindi compatibile con la Relatività Generale di Einstein. È però coerente con la Relatività Speciale, la parte della Teoria di Einstein che non tira in ballo la gravità.

Le particelle elementari
Le particelle elementari si dividono in due grandi gruppi: i fermioni e i bosoni. Non è possibile capire perché c’è questa suddivisione senza conoscere un po’ di meccanica quantistica, quindi oggi non ve lo spiego. Per ora basta sapere una cosa: i fermioni, nel Modello standard, sono i veri e propri costituenti della materia, i mattoncini con cui si formano le particelle non elementari. I bosoni invece sono particelle un po’ particolari e funzionano più o meno come una colla. Ah, poi c’è il bosone di Higgs.

I fermioni
Per conoscere tutte le particelle elementari del Modello standard direi di partire a osservarle facendo una specie di zoom. Immaginiamo di prendere un atomo di elio, quel gas che se respirato fa venire una voce da cartone animato. Si studia a scuola che l’atomo di elio è composto di tre tipi di particelle: due protoni, con carica elettrica positiva, due neutroni, neutri, e due elettroni, con carica elettrica negativa. Queste tre particelle sono tutte fermioni, ma solo una di queste è una particella elementare: l’elettrone, che non può essere scomposto in particelle più piccole. I protoni e i neutroni invece sono particelle non elementari e sono composte da particelle più piccole chiamate quark. Il nome quark fu preso da un passo del romanzo Finnegans Wake di James Joyce, in cui la parola “quarks” è una fusione dell’espressione “question marks”, che significa “punti di domanda”. Il nome è tutt’ora evocativo perché non è possibile osservare dei quark isolati, ma è possibile studiarli solamente quando sono uniti a formare altre particelle. Un’altra curiosità è che ci sono sei tipi di quark, ognuno con delle proprietà fisiche diverse, con dei nomi esotici che i fisici chiamano sapori: up, down, charm, strange top e bottom. Tutti i quark sono fermioni e tutti i fermioni che non sono quark sono chiamati leptoni. L’elettrone, ad esempio, è una particella elementare, un fermione, ma non è un quark. È quindi un leptone.
Nel corso degli anni, facendo collidere tra loro delle particelle o studiando le reazioni nucleari, sono stati scoperti altri leptoni: i muoni, i tauoni e i neutrini.
I muoni furono scoperti negli anni ’30 studiando i raggi cosmici: alcune particelle, attraversando un campo magnetico, deviavano la propria traiettoria in maniera strana. Curvavano meno degli elettroni, ma più dei protoni. Si immaginò che queste nuove particelle avessero la stessa carica elettrica degli elettroni, ma una massa diversa. Il mesone ha infatti una massa 200 volte più grande di quella dell’elettrone.
I tauoni furono scoperti negli anni ’70 in maniera indiretta, studiando alcuni fenomeni anomali. A queste particelle venne assegnata la lettera greca tau – da cui il nome italiano tauone –  perché si trattava del terzo (τρίτον, in greco) leptone carico scoperto, dopo l’elettrone e il muone. Il tauone ha una massa 3500 volte più grande dell’elettrone.
I neutrini invece sono particelle molto particolari. Furono studiati negli anni ’30, ma scoperti solo a metà degli anni ’50. I neutrini non hanno carica elettrica e hanno una massa così piccola che per molto tempo si è sospettato che fossero senza massa. La massa del neutrino è circa 100 mila volte più piccola di quella dell’elettrone. A causa delle loro caratteristiche i neutrini sono molto difficili da rilevare: interagiscono poco con le altre particelle e, quando lo fanno, lo fanno molto debolmente. La scoperta che i neutrini hanno massa ha fatto guadagnare a Takaaki Kajita e ad Arthur B. McDonald il premio Nobel per la fisica 2016.

Le particelle mediatrici delle forze
Abbiamo detto che il Modello standard si occupa non solo di classificare le particelle, ma anche di spiegare come queste interagiscono tra loro tramite tre delle quattro forze fondamentali presenti in natura. Il Modello standard prevede che l’interazione tra i leptoni e tra i quark sia mediata dallo scambio di altre particelle, dette appunto particelle mediatrici delle forze. In parole povere, quando delle particelle interagiscono tra loro lo fanno scambiandosi delle particelle mediatrici. Le particelle mediatrici delle forze, chiamate in gergo tecnico bosoni di gauge, si occupano quindi di fare da tramite tra le altre particelle.
I bosoni di gauge sono appunto bosoni e sono di tre tipi. I fotoni – di cui abbiamo parlato nella scorsa newsletter – che sono responsabili della forza elettromagnetica. I gluoni, responsabili della forza nucleare forte e i bosoni W e Z, responsabili della forza nucleare debole.
Esiste poi un quarto tipo di bosone che è diventato in questi anni il più famoso: il bosone di Higgs.

Il bosone di Higgs
Il bosone di Higgs è una particella elementare che gioca un ruolo cruciale nel Modello standard. Attraverso un meccanismo particolare chiamato meccanismo di Higgs, si ritiene che sia il bosone di Higgs a conferire massa alle altre particelle.
Vedetela così: immaginate un campo pieno di neve e supponete di dover attraversarlo. Avete vari modi per attraversarlo: potete indossare degli scarponi, usare delle racchette da neve oppure degli sci. Chiaramente in base a cosa scegliete attraverserete il campo in modi diversi. Chi di voi prenderà gli scarponi sprofonderà nella neve, farà fatica a camminare e andrà molto lento. Chi indosserà le racchette sarà più agile, camminando senza sprofondare troppo nel campo di neve. Chi invece userà gli sci sfreccerà senza problemi sul manto nevoso. È proprio quello che succede alle particelle quando viaggiano nel campo di Higgs: alcune particelle sfrecceranno velocissime, senza interagire con il campo, come se indossassero gli sci. Sono le particelle senza massa – come ad esempio i fotoni, che viaggiano alla velocità della luce – o con una massa piccolissima – come ad esempio i neutrini, che viaggiano quasi alla velocità della luce. Altre particelle invece saranno più lente perché “sprofondano” nel campo di Higgs. Queste ultime sono le particelle con una grande massa, come ad esempio i muoni, i tauoni i protoni e i neutroni. Questo processo in cui il campo di Higgs rallenta alcune particelle – e non altre – dando loro della massa si chiama meccanismo di Higgs. In questa metafora il bosone di Higgs è il fiocco di neve, che fa interagire le particelle con il campo di Higgs.
Il bosone di Higgs è stato scoperto al CERN nel 2013. Stavolta il Nobel però è andato a Peter Higgs, che teorizzò l’esistenza di questa particella nel 1964.

I limiti del Modello standard
Nonostante i successi, il Modello standard – che viene continuamente utilizzato e confermato al CERN di Ginevra e in altri esperimenti – non è considerato una teoria completa.
Innanzitutto, come abbiamo detto, non è compatibile con la Relatività Generale perché non include la forza di gravità. In secondo luogo ha molti parametri liberi, che devono essere determinati per via sperimentale, ma che sono in qualche modo collegati tra loro: esiste quindi una relazione tra questi parametri non prevista dal Modello. Inoltre il modello standard non prevede che i neutrini abbiano una massa, ma ormai sappiamo che ce l’hanno.
Da molti anni i fisici stanno provando a superare queste difficoltà, ma non è un’impresa facile: le teorie sono molto complesse e la natura regala sempre fenomeni nuovi da tenere in considerazione.

Pillole della settimana
Alcune notizie di questi giorni, brevi.

Curiosity fa foto
Curiosity, la sonda NASA che si trova su Marte, ha scattato alcune foto ad alta definizione della sabbia marziana. Poi si è fatto un selfie. Trovate le nuove foto qui.

Il Falcon 9 è esploso, ancora
SpaceX è riuscito dopo cinque tentativi a mandare in orbita geostazionaria il satellite SES-9. Il lanciatore Falcon 9 ha poi provato ad atterrare su una chiatta nell’oceano, ma è esploso. Purtroppo il video è saltato durante l’impatto e non abbiamo immagini. Niente di preoccupante, comunque. Era un tentativo a bassa probabilità di successo e per il resto la missione è andata comunque molto bene.

Hubble ha fatto una vecchia foto
Il telescopio spaziale Hubble ha fotografato la galassia GN-z11, che si trova a 13,4 miliardi di anni luce da noi. GN-z11 è la più lontana galassia mai osservata e dunque è la più vecchia: la galassia non si presenta come è oggi, ma appare come era 13,4 miliardi di anni fa. Secondo le stime la vediamo così come appariva solo 400 milioni di anni dopo la nascita dell’universo. Trovate più informazioni qui.

Feedback
Aspetto le vostre opinioni a spacebreak [at] francescobussola.it
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.

Per approfondire
– Il Modello standard, con delle infografiche
– Il video completo della missione SES-9 di SpaceX
– Un video in inglese sul Modello Standard
– Un’intervista a Peter Higgs, fatta nel 2012, in cui si racconta di come è nato il termine particella di dio