Tag: collasso della funzione d’onda

L’entanglement

Se ve lo siete chiesti, no, la newsletter non è sparita. Ho dovuto metterla in pausa inaspettatamente e riesco a riprenderla solo oggi. Detto questo, ringrazio chi in queste settimane si è iscritto sulla fiducia, magari dimenticandosi di averlo fatto. Impavidi.
Prima, però, ecco la seconda puntata del podcast Storie, in cui intervisto giovani ricercatori in fisica. È la volta di Fabrizio Larcher, che si occupa di fisica dei fluidi ultrafreddi all’università di Trento. Lo trovate qui.

Ascolta 2. I fluidi ultrafreddi” su Spreaker.

Oggi parliamo dell’entanglement, che è forse uno dei fenomeni più esotici e controintuitivi della fisica moderna, tanto che anche i fisici rischiano di fare confusione quando ne parlano. Cercherò di fare del mio meglio.
In fondo alla newsletter trovate la vignetta di Ale.
Se avete domande scrivetemi a spacebreak [at] francescobussola.it.
Potete seguirmi su facebook e twitter.

Di cosa parliamo oggi
– i sistemi quantistici
– il problema della misura
– l’entanglement
– pillole

L’entanglement
Nella scorsa newsletter, così come in altre occasioni, abbiamo avuto modo di ricordare che le particelle in natura non si comportano sempre come delle “palline”, ma spesso hanno un comportamento simile alle onde: riescono a superare parzialmente gli ostacoli (effetto tunnel), attraversano due fessure contemporaneamente e non possiamo determinare contemporaneamente la loro posizione e la loro velocità, così come faremmo con una biglia. Della loro natura i fisici riescono a dare solo una descrizione probabilistica. Ad esempio: qual è la probabilità che, provando a misurare una particella in una certa posizione, la trovi esattamente lì?
Questo accade non tanto per l’incapacità dei fisici di essere più precisi con i loro esperimenti, ma apparentemente per un limite intrinseco della natura, che a scale microscopiche comincia a comportarsi in maniera strana.
In termini fisici questo concetto si traduce così: le particelle non si trovano quasi mai in un preciso stato fisico, ben definito. Molto spesso sono in una sovrapposizione di stati.
In altre parole, non è colpa nostra se non riusciamo a dire a priori dove si trova una particella, perché, quando si comporta come un’onda, si trova un po’ qui e un po’ là con una certa probabilità. Fortunatamente riusciamo a codificare questa e altre informazioni probabilistiche in un oggetto matematico chiamato funzione d’onda.
Se vi ricordate questa newsletter, è proprio questo comportamento ondulatorio che permette a una particella di passare attraverso due fessure contemporaneamente. ​Non mi dilungo: ne abbiamo già parlato qui, qui, qui, qui e qui.

I sistemi quantistici e la misura
Un sistema quantistico è un insieme di particelle, descritte appunto da una funzione d’onda. Come già detto, di loro non possiamo sapere tutto a priori: possiamo preparare queste particelle affinché abbiano una certa energia o siano confinate in una scatola, ma per conoscere alcune loro caratteristiche, le dobbiamo misurare.
Misurare una quantità fisica sembra un’operazione piuttosto semplice, se si trascurano gli errori di misurazione. Pensateci, se state guardando la Formula 1 potete conoscere la posizione e la velocità di ogni macchina quando volete. È facile misurarle.
Le cose si fanno più complicate però quando stiamo studiando delle particelle, che seguono le leggi della Meccanica quantistica. Supponiamo di voler misurare la posizione di una particella confinata in una scatola. Prima di misurarla sappiamo solo che la particella, che si sta comportando come un’onda, non si trova in un luogo preciso della scatola: si trova in una sovrapposizione di stati. È un po’ qui e un po’ là, con una certa probabilità. Si dice in questo caso che la sua funzione d’onda è delocalizzata, perché la particella non è precisamente in alcun luogo. Effettuando la misura, ossia misurando la posizione della particella, la sua funzione d’onda cambia, collassando in un punto preciso della scatola e la particella non si trova più in una sovrapposizione di stati, ma nello stato fisico che localizzato esattamente quel punto.
Sembra un meccanismo complicato e in fondo lo è, perché è molto controintuitivo, ma è fatto di tre semplici passaggi:
1. Prima di misurare la posizione della particella, sappiamo che è delocalizzata, perché si sta comportando come un’onda;
2. Al momento della misura, la funzione d’onda che descriveva la sovrapposizione dei luoghi in cui si trovava, collassa nel punto dove è stata misurata la particella;
3. Effettuata la misura, la particella non si comporta più come un’onda delocalizzata e la sua funzione d’onda non è più una sovrapposizione di stati.

La stessa cosa accade quando volete misurare una qualsiasi altra caratteristica delle particelle, come ad esempio la velocità o lo spin

Cos’è l’entanglement
L’entanglement è forse il fenomeno fisico più controintuitivo della fisica moderna. Ve lo spiego brevemente.
Immaginate di prendere un sistema quantistico formato da due particelle, ad esempio due elettroni, e cerchiamo di preparare questi elettroni affinché si trovino nello stesso stato fisico o, detto più grezzamente, affinché abbiano la stessa energia e la stessa funzione d’onda che ne descriva posizione e velocità. Sappiamo poi che gli elettroni hanno anche un’altra caratteristica fisica, chiamata spin. Ne abbiamo parlato in questa newsletter, ma non è fondamentale ora sapere cosa sia lo spin. Basta sapere che il valore dello spin degli elettroni è 1/2 e che può essere orientato in due direzioni: “su” o “giù”. Quindi un elettrone può avere spin 1/2 su oppure spin 1/2 giù. Altra cosa importante da ricordare è che, come dice il principio di esclusione di Pauli, se due elettroni si trovano nello stesso stato fisico, ossia se sono descritti dalla stessa funzione d’onda, non possono avere entrambi spin su o spin giù, ma devono alternarsi. È una regola della natura.
Ecco, nel nostro esperimento abbiamo preparato due elettroni nello stesso stato fisico e quindi, se uno di questi ha spin su, l’altro avrà spin giù e viceversa. Tuttavia non possiamo sapere quale dei due è su e quale è giù, perché, secondo la Meccanica quantistica questi elettroni si stanno comportando come onde e il loro spin è ora in una sovrapposizione di stati “su” e “giù” (un po’ come il gatto di Schroedinger nella scatola è sia vivo che morto contemporaneamente).
Ora per concludere l’esperimento, immaginate di separare questi due elettroni, trasportandoli in due luoghi molto distanti tra loro.
Ad esempio portiamone uno a Roma e uno a Tokyo. Gli elettroni, pur essendo separati, si trovano ancora nello stesso stato fisico di partenza: hanno una certa energia, una certa funzione d’onda che ne descrive la posizione e la velocità e il loro spin è ancora un miscuglio indefinito di “su” e “giù”.
Immaginate ora che i fisici di Roma provino a misurare lo spin dell’elettrone che hanno a disposizione e che trovino che il suo spin è 1/2 su.
Ecco,siccome l’altro elettrone ha la stessa funzione d’onda, a causa del principio di esclusione di Pauli, istantaneamente si modificherà in modo da avere spin 1/2 giù. Il comportamento dell’elettrone a Tokyo è dunque correlato a quello di Roma: se misuriamo qualche caratteristica fisica dell’elettrone di Roma, modificandone il suo stato e quindi la sua funzione d’onda, influenziamo anche le caratteristiche fisiche dell’elettrone di Tokyo e viceversa. Questa particolare correlazione si chiama appunto entanglement.

I problemi dell’entanglement
Questo strano fenomeno naturale sarebbe già affascinante così, se non creasse anche degli enormi problemi.
Il primo e più importante problema è questo: come fa l’elettrone di Tokyo a sapere istantaneamente che i fisici di Roma hanno misurato lo spin e che hanno trovato spin su?
Questa domanda è molto profonda. Da una parte indaga l’essenza stessa dell’entanglement: al momento della misura viene trasferita informazione da un elettrone all’altro? E se è così, possiamo usare l’entanglement per creare un moderno ed efficientissimo telegrafo senza fili, trasmettendo istantaneamente dei segnali da una parte all’altra del globo?
D’altra parte sorge un grosso problema concettuale: un’altra grande teoria fisica, la teoria della relatività, dice che nulla, compresi i segnali, può viaggiare più velocemente della luce. Significa quindi che abbiamo trovato un controesempio? Non sarà forse che il limite della velocità della luce è sbagliato?
Ne parliamo nella prossima newsletter.

Pillole
Alcune notizie di questi giorni, brevi.

La materia oscura non si vede
Gli scienziati ritengono che l’84% della materia presente nell’universo sia materia oscura. Uno dei modelli più gettonati sostiene che la materia oscura sia fatta da particelle dotate di massa, ma debolmente interagenti, chiamate WIMP. La collaborazione internazionale LUX (Large Underground Xenon) ha cercato di rivelare questo ipotetico tipo di particella, ma l’esperimento non ha dato i risultati sperati.

SpaceX
Avete presente il razzo Falcon9 di SpaceX, quello che atterra in verticale su una chiatta? Questa foto rende bene l’idea di quanto sia grande.

Kepler trova pianeti
Grazie ai dati raccolti dalla missione Kepler, lanciata dalla NASA nel 2009, un gruppo di ricerca della Harvard university ha classificato gli esopianeti individuati dal telescopio suddividendoli in quattro gruppi in base alla loro grandezza e al loro grado di abitabilità. La ricerca di pianeti potenzialmente simili alla Terra al di fuori del Sistema solare continua.

La fisica di Ale
La striscia di oggi. I fumetti di Alessandro sono su Vuoto Comico.

[Credit: L’entanglement, di Alessandro Toffali (Vuoto Comico), CC-BY-NC-ND 4.0]

Per approfondire
– Un articolo su Wired, in italiano
– Un articolo su Vice, in italiano
– Un video con le vignette di PhD comics, in inglese
– Un video di TED, con i sottotitoli in italiano

Il gatto di Schrödinger

Il gatto di Schrödinger è uno dei gatti più famosi della scienza popolare. La settimana scorsa, spiegando i principi della Meccanica quantistica, non l’ho citato. Ne parliamo oggi, cercando di dare qualche spunto anche a chi sa già cos’è. Parleremo anche di spazio e dei risultati di alcuni esperimenti.

Di cosa parliamo oggi
– il gatto di Schrödinger
– pillole della settimana

Cos’è il gatto di Schrödinger
Il gatto di Schrödinger è una metafora per capire come va interpretata la natura quando si studia l’infinitamente piccolo usando la Meccanica quantistica. Abbiamo visto la scorsa settimana che non possiamo conoscere tutto quello che vogliamo della natura. Ad esempio, studiando una particella, non riusciamo a misurare contemporaneamente e con infinita precisione la sua posizione e la sua velocità. Meglio ne misuriamo la posizione, meno precisamente possiamo sapere la velocità, e viceversa. Non è un limite tecnologico, ma un limite fisico chiamato principio di indeterminazione di Heisenberg. La natura ci impedisce di farlo.
Siccome non possiamo sapere tutto con la precisione che vogliamo, in Meccanica quantistica vengono utilizzate delle funzioni matematiche di probabilità, chiamate funzioni d’onda: se non sappiamo dire precisamente la posizione di una particella, possiamo però sapere qual è la probabilità di trovarla in un certo posto. Queste funzioni d’onda non sono predittive, ma descrivono in maniera probabilistica lo stato di una particella.

L’esperimento del gatto
L’esperimento mentale del gatto fu proposto dal fisico Erwin Schrödinger nel 1935 all’interno della discussione sul paradosso EPR – di cui oggi non parliamo – ma secondo me è utile per spiegare l’idea della funzione d’onda.
Immaginate di chiudere un gatto in una scatola. All’interno della scatola, oltre al gatto, c’è una fialetta di cianuro collegata a un marchingegno con una sostanza radioattiva. Il marchingegno funziona così: quando la sostanza radioattiva decade, ossia quando emette almeno una radiazione, la fialetta si rompe, il cianuro esce e il gatto muore. Però la sostanza è molto poco radioattiva e ha un tempo di dimezzamento alto, che significa che emette particelle radioattive molto lentamente. Diciamo, per esempio, che il tempo di dimezzamento sia di dieci minuti. In questo caso la probabilità che la sostanza emetta una radiazione dopo dieci minuti è del 50%. Significa che dopo dieci minuti c’è il 50% di probabilità che la sostanza abbia emesso una particella radioattiva e il marchingegno abbia rotto la fialetta di cianuro e il 50% che non l’abbia fatto. Testa o croce, insomma. Può averlo fatto, come no.
Se dopo dieci minuti non apriamo la scatola non c’è modo di sapere se la sostanza è decaduta o meno. Quello che sappiamo è solo la probabilità che l’abbia fatto, il 50%. In questo caso non possiamo dire che la sostanza è decaduta, ma nemmeno che non lo sia. La Meccanica quantistica interpreta questa situazione nel modo seguente: “la sostanza è decaduta, ma anche no”, con una probabilità del 50%. Se volessimo descrivere lo stato della sostanza, questo è tutto ciò che potremmo dire. Questa è la sua funzione d’onda probabilistica.

E il gatto?
La vita del gatto però, si trova appesa allo stesso filo: se la sostanza è decaduta, la fiala di cianuro si è rotta ed è morto, altrimenti è vivo. Se non apriamo la scatola possiamo dire se il gatto è vivo? No, possiamo solamente dire che c’è il 50% di probabilità che lo sia. Anche il gatto quindi ha una funzione d’onda e si trova in una sovrapposizione di stati. Non è vivo e non è morto. È entrambi, contemporaneamente, con una probabilità del 50%. Almeno finché non apriamo la scatola.

Beh, apriamo la scatola
Aprendo la scatola possiamo controllare se il gatto è vivo o morto. Questa azione corrisponde, in Meccanica quantistica, a un atto di misura: abbiamo misurato lo stato del gatto. Nel momento in cui facciamo una misura la descrizione probabilistica scompare. A quel punto otteniamo un risultato certo: vivo o morto, decaduto o non decaduto, 1 o 0, c’è o non c’è. L’atto di misurare fa collassare la funzione d’onda in uno degli stati probabili. Se si ripetesse l’esperimento tante volte, si scoprirebbe che la metà delle volte il gatto sopravvive, la metà muore, esattamente come la funzione d’onda ci stava dicendo.

Eh no
Potreste rispondermi: “È una sciocchezza che il gatto sia sia vivo che morto prima di aprire la scatola. Non c’è alcuna sovrapposizione di stati e nessun collasso della funzione d’onda. Il gatto è già vivo o già morto, solo che noi non lo sappiamo e quando apriamo la scatola semplicemente lo scopriamo”.
Avreste ragione, perché infatti il mondo macroscopico funziona così e il gatto è appunto solo una metafora. Ma c’è un esempio miroscopico che i lettori affezionati di questa newsletter conoscono bene in cui invece ho ragione io.

La doppia fenditura, il ritorno
Vi ricordo brevemente cos’è l’esperimento della doppia fenditura. Proviamo a sparare una particella contro due fenditure molto vicine. Ci aspetteremmo che la particella passi da una delle due fenditure e non dall’altra, come una pallina di un flipper. Abbiamo visto però che non accade così, ma che in casi come questo le particelle si comportano come onde e riescono a passare da entrambe le fenditure, creando una figura di interferenza (per chi si è perso e per chi non c’era, trovate tutto qui e qui).

 

Doppia fenditura

Di Koantum, di Trutz Behn (Opera propria) CC-BY-SA-3.0, attraverso Wikimedia Commons

Proviamo a interpretare questo fenomeno in modo simile al gatto. La particella ha il 50% di probabilità di passare nella fenditura a sinistra e il 50% di passare a destra. Se non chiudiamo le fenditure abbiamo visto che le particelle, anche sparandole una alla volta, anziché raccogliersi in corrispondenza delle due fenditure, creano una figura di interferenza e abbiamo detto che l’unico modo per giustificare questo comportamento è convincersi che ogni particella passi da entrambe le fenditure contemporaneamente, come fa un’onda del mare attraverso i boccaporti. Qui sotto un video di un esperiento in cui si vedono le particelle – in questo caso elettroni – disporsi una alla volta secondo una configurazione strana, anziché raccogliersi su due righe in corrispondenza delle fenditure.

Se ogni particella passa sia a destra che a sinistra, però, significa che si trova in una sovrapposizione di stati: non possiamo dire “la particella è passata a sinistra” né “la particella è passata a destra”. Anzi, come dimostra la figura di interferenza, la particella è passata sia a destra che a sinistra, comportandosi come un’onda.
La funzione d’onda della particella ci dice che la probabilità di trovare la particella a destra o a sinistra è del 50% ed è proprio quello che accade. Se si mette un contatore di particelle su una delle due fenditure – chiudendo di fatto la fenditura – si scopre che metà delle particelle sparate vengono rilevate dal contatore, mentre le altre mezze passano dall’altra fenditura aperta e stavolta passano come se fossero delle semplici palline: vanno dritte e non formano alcuna figura di interferenza. Insomma, misurando la posizione delle particelle – che è l’equivalente di aprire la scatola con il gatto – scopriamo se queste passano a sinistra o a destra: la loro funzione d’onda collassa in uno dei due stati possibili, non sono più “sia a sinistra che a destra” e la figura di interferenza, che era un segnale del loro comportamento quantistico, scompare.

Pillole della settimana
Alcune notizie di questi giorni, brevi.

LHC è ripartito
LHC, l’acceleratore di particelle al CERN di Ginevra, è stato rimesso in funzione dopo la pausa invernale. Attualmente è in fase test, ma le prime collisioni buone per fare esperimenti si dovrebbero avere verso fine aprile. Negli scorsi mesi era stato misurato un fenomeno anomalo e alcuni sperano che si tratti di una nuova particella a 750 GeV di massa. Si vedrà.

Nuove misure di precisione a LHCb
I responsabili dell’esperimento LHCb del CERN di Ginevra hanno annunciato due nuovi record di precisione nelle misure di alcuni parametri fondamentali della matrice Cabibbo-Kobayashi-Maskawa, un oggetto matematico che descrive il comportamento dei quark. Queste misure permetteranno di verificare con precisione ancora maggiore il Modello Standard delle particelle.

Un uomo su un asteroide
Riuscirà l’uomo a mettere piede su un asteroide? Forse un giorno sì, grazie a una missione NASA – per ora solo in fase di definizione – chiamata Asteroid Redirect Mission (ARM). Lo studio degli asteroidi è importante non solo per motivi scientifici, ma anche per sviluppare le tecniche di difesa dagli asteroidi, ossia quelle procedure utilizzabili in caso si scopra un asteroide in rotta di collisione con la Terra.
L’ARM è stata pensata in vista del fine vita della ISS. La Stazione Spaziale diventerà, al termine del suo compito, una base di appoggio per varie missioni nello spazio. Tutti i dettagli di ARM sono qui (inglese).

Hitomi non se la passa bene
L’agenzia spaziale Giapponese JAXA non riesce più a comunicare con il satellite a raggi X Hitomi, lanciato a Febbraio. Maggiori tentativi saranno fatti in questi giorni.

Per approfondire
– un video sul riavvio di LHC, in inglese
– una visuale a 360° del quarto modulo della ISS
– Il paradosso EPR, spiegato dal Prof. Valter Moretti