Tag: particelle virtuali

La radiazione di Hawking e il quantum spin liquid

Perché Hawking è così famoso? Per la sua vita straordinaria, certo, ma anche per aver derivato uno dei più importanti risultati della fisica moderna: la radiazione di Hawking. C’entrano i buchi neri e la Meccanica quantistica.
Per chi volesse leggere le vecchie newsletter, le trova tutte sul mio sito o su medium. Space break ha anche una pagina facebook e un account twitter, dove pubblico di tanto in tanto curiosità e approfondimenti.

Di cosa parliamo oggi
– chi è Stephen Hawking
– la radiazione di Hawking
– pillole della settimana

Chi è Stephen Hawking
Stephen Hawking è un fisico britannico. Nato nel 1942, da quando ha 21 anni è affetto da SLA, una malattia neurodegenerativa. A Hawking vennero dati due anni di vita. La vita media di una persona affetta da SLA è tra i due e i cinque anni e meno del 5% dei malati sopravvive per più vent’anni. Hawking oggi ha 74 anni ed è sopravvissuto per così a lungo che la sua malattia sembra essersi stabilizzata. Pur non riuscendo a muovere il suo corpo atrofizzato e dovendo comunicare attraverso un sintetizzatore vocale, ha una mente ancora particolarmente brillante. Discute di scienza e religione e continua a fare divulgazione scientifica e ricerca di buona qualità. Il suoi risultati più importanti sono stati raggiunti negli anni ’70. Nel 1971 ha contribuito a dimostrare il cosiddetto “No-hair theorem”, un teorema matematico che riguarda i buchi neri e le loro proprietà fisiche. Nel 1974 ha teorizzato l’esistenza di una radiazione termica proveniente dai buchi neri: la radiazione di Hawking. Ne parliamo oggi.

I buchi neri, in tre righe
I buchi neri sono oggetti celesti con una grande massa che riescono ad attirare ed intrappolare ogni cosa, compresa la radiazione elettromagnetica. Insomma, mangiano tutto. Siccome anche la luce non riesce a uscire, non li vediamo brillare. Sono neri, appunto.

La radiazione di Hawking
Nonostante dal punto di vista classico, ossia secondo la Teoria della Relatività Generale, nulla può uscire da un buco nero, Hawking ha dimostrato che gli effetti quantistici permettono ai buchi neri di emettere una radiazione. In sostanza si tratta di una radiazione termica che si comporta come se fosse emessa da un corpo nero a una certa temperatura.

Cos’è un corpo nero
Un corpo nero in fisica è quello che dice di essere: un corpo completamente nero che assorbe tutta la radiazione elettromagnetica che lo colpisce, senza rifletterla. Riesce però a emettere una radiazione termica, che dipende dalla sua temperatura. Un corpo nero è considerato solitamente un oggetto ideale, perché ci si aspetta che un qualsiasi materiale rifletta un po’ di luce, ma è un utile modello che viene spesso usato quando si studiano i fenomeni elettromagnetici.

Che c’entra con i buchi neri
Ecco, Hawking ha dimostrato che i buchi neri, che non sono un materiale ma degli oggetti celesti, si comportano come un corpo nero: nonostante “mangino tutto”, compresa la radiazione elettromagnetica, riescono a emettere una radiazione termica, come se questa fosse emessa da un corpo nero ad una certa temperatura. In questo caso la temperatura dipende dalla massa del buco nero.
Questa radiazione emessa è chiamata a volte evaporazione, perché fa perdere energia al buco nero e dunque gli fa perdere massa. Perciò se il buco nero non mangiasse nulla per molto tempo, continuerebbe a “evaporare”, rimpicciolendosi fino a scomparire.

Come si arriva a questo risultato
La dimostrazione dell’esistenza di questa radiazione fa uso dei principi della Meccanica quantistica, applicati nell’ambito della Teoria della Relatività. Abbiamo detto più volte che Meccanica quantistica e Relatività non vanno molto d’accordo: dove funziona una teoria, fallisce l’altra e viceversa. Tuttavia negli anni si sono trovati dei modi per utilizzarle insieme. Esiste una teoria che permette di unificare la Meccanica quantistica con la Relatività Speciale. Questa teoria, chiamata Teoria quantistica dei campi (Quantum field theory) è molto complicata, ma ha permesso di ricavare il Modello Standard delle particelle elementari. Insomma, è la Teoria che ha reso possibile l’esperimento del CERN e tutte le scoperte fisiche degli ultimi sessant’anni. La Teoria dei campi funziona però solo con la Relatività Speciale, non con la Relatività Generale, ossia funziona quando si trascurano gli effetti della gravità. Questo significa che non abbiamo ancora una teoria fisica in grado di descrivere tutti i fenomeni quantistici e la gravità. In particolare non siamo in grado di descrivere il comportamento quantistico della gravità stessa. Se si trovasse una teoria di questo tipo, sarebbe quella che i fisici chiamano La teoria del tutto, perché sarebbe in grado di spiegare tutti i fenomeni naturali in modo coerente.
Nonostante non siamo in grado di spiegare a fondo il comportamento quantistico della forza di gravità, è possibile però applicare la Teoria dei campi anche in presenza di gravità. È la cosiddetta Teoria dei campi in spaziotempo curvo. Non è una teoria completa, perché la gravità fa in qualche modo da spettatore ai processi fisici in gioco, ma ci permette di studiare alcuni fenomeni quantistici anche quando c’è la gravità – anche vicino a un buco nero, ad esempio.

Le particelle virtuali e la radiazione di Hawking
Molto spesso per spiegare la radiazione di Hawking viene utilizzato il concetto di particella virtuale. Le particelle virtuali sono in generale particelle che violano alcuni principi fisici, come il principio di conservazione o il principio di causalità. Per questo non sono considerate particelle vere e proprie. Si usano perché saltano fuori nella Teoria dei campi quando si fanno alcuni conti, ma la loro esistenza in natura è una questione più filosofica che scientifica.
Comunque sia, spesso la radiazione di Hawking viene spiegata utilizzando le particelle virtuali. Vicino al buco nero si formano e si distruggono continuamente delle coppie di particelle virtuali con energia nulla. A volte però queste coppie di particelle si dividono: una particella cade nel buco nero e una fugge da esso. Delle due, la seconda, allontanandosi dal buco nero, diventa reale ed in teoria è possibile misurarla: è quella che crea la radiazione di Hawking. La prima invece cade nel buco nero e non la vediamo più. Siccome poi la coppia aveva energia totale nulla e la particella uscente ha energia positiva, per la conservazione dell’energia si dice che le particelle virtuali cadute nel buco nero hanno energia negativa e sono quindi loro che fanno diminuire l’energia – ossia la massa – del buco nero, facendolo rimpicciolire.
Tuttavia questa descrizione, anche se evocativa e in un certo senso intuitiva, è sbagliata: in Teoria dei campi in spaziotempo curvo, ossia quando anche la gravità è in gioco, non è possibile definire chiaramente cosa sia una particella. La definizione di particella è chiara quando la gravità è spenta, ma quando la gravità è accesa perde di significato. Hawking stesso non utilizza le particelle virtuali negli articoli tecnici. Insomma, è possibile ottenere i risultati sulla radiazione di Hawking in maniera rigorosa senza utilizzare il concetto di particella virtuale, che è solo un espediente divulgativo.

La radiazione di Hawking è stata misurata?
No, e per un motivo molto semplice: i buchi neri sono difficili da trovare e sono molto distanti da noi. Non abbiamo ancora la tecnologia per avvicinarci a un buco nero e misurare la radiazione di Hawking. Tuttavia è possibile fare degli esperimenti in laboratorio per simulare il comportamento di un buco nero utilizzando fluidi o fibre ottiche. In questi esperimenti sono stati osservati dei comportamenti compatibili con la radiazione di Hawking.

Pillole della settimana
Alcune notizie di questi giorni, brevi.

Scoperto un nuovo stato della materia
I fisici hanno osservato, in un materiale di Cloruro di rutenio, un nuovo stato della materia che era stato previsto una quarantina di anni fa, chiamato quantum spin liquid. Si tratta di un liquido fatto di elettroni a temperature prossime allo zero assoluto (-273 °C). Solitamente a temperature così basse gli elettroni tendono ad allinearsi in maniera particolare. In questo caso invece non lo fanno. Questo nuovo stato della materia potrebbe servire in futuro per sviluppare i computer quantistici, ma è troppo presto per dirlo con certezza. Trovate tutto qui.

Nuovo test per New Shepard, il lanciatore di Blue Origin
Terzo test per Blue Origin, la compagnia di Jeff Bezof che sta sviluppando dei lanciatori per il turismo spaziale. New Shepard è salito fino a 103 Km di quota, per poi riatterrare verticalmente a terra. Guardate il video perché è fantascienza: New Shepard ha riattivato i motori a 1 Km da terra, decelerando paurosamente.

Le scoperte di NEOWISE
La missione NEOWISE (Near-Earth Object Wide-field Survey Explorer) della NASA per la ricerca di asteroidi vicini alla terra ha rilasciato nuovi dati. Dalla sua riattivazione NEOWISE ha scoperto 250 nuovi oggetti, di cui 72 vicini alla terra, e 4 nuove comete. I dettagli e un video di spiegazione sono qui.

Feedback
Aspetto le vostre opinioni e domande a spacebreak [at] francescobussola.it
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.

Per approfondire
– la radiazione di Hawking, spiegata in termini di particelle virtuali
– perché non abbiamo una foto di un buco nero (video in inglese)
– il paradosso dell’informazione dei buchi neri