Tag: Relatività Generale

La scoperta delle onde gravitazionali

Settimana pazzesca per la fisica. Con una conferenza stampa è stato annunciato che l’esperimento LIGO ha rilevato per la prima volta le onde gravitazionali. Ne parliamo oggi. La newsletter è lunga, ma ne vale la pena. Può essere utile dare una letta alla scorsa newsletter sui buchi neri, per chi non l’avesse fatto.
Durante la conferenza stampa ho fatto un livetweet. Lo trovate qui.
Ricordo che le newsletter sono pubblicate online con qualche giorno di ritardo.
Space break è anche sui social: qui la pagina facebook e qui l’account twitter.
Se vi piace questa newsletter potete farla conoscere a un amico inoltrando la mail o suggerendogli di iscriversi.
Se avete domande scrivetemi a spacebreak [at] francescobussola.it

Di cosa parliamo oggi
– cosa sono le onde gravitazionali
– come rilevare le onde gravitazionali
– la dimensione di quello che è accaduto
– pillole della settimana

Riassunto delle puntate precedenti
L’universo in cui viviamo, secondo la Teoria della Relatività, “poggia” su una struttura geometrica intangibile chiamata spaziotempo. Possiamo immaginare questa struttura come un lenzuolo steso. La presenza di stelle, pianeti o di altri oggetti dotati di massa sopra il lenzuolo ne modifica la forma, creando delle conche. Questo effetto di deformazione, chiamato curvatura, è il modo in cui la Relatività descrive la gravità: se si finisce nella conca di un altro corpo, ci si cade addosso. La presenza di masse, quindi, modifica lo spaziotempo, ossia deforma sia il tempo che lo spazio. Nella nostra vita non ci accorgiamo di queste deformazioni perché anche noi veniamo deformati insieme allo spaziotempo e tutto ci sembra normale.

Cosa sono le onde gravitazionali
Oltre a questo, la Relatività predice che delle masse in accelerazione, ad esempio due masse che ruotano l’una attorno all’altra, producano, oltre alle loro conche, delle increspature dello spaziotempo che si propagano nel lenzuolo. L’idea è simile a quella di una barca che muovendosi sull’acqua produce delle onde. L’unica importante differenza è che non è sufficiente che le masse si muovano come la barca, ma devono proprio accelerare (modificando il loro momento di quadrupolo, per chi sa cos’è).
Le onde gravitazionali si propagano deformando lo spaziotempo in senso radiale, come in questa animazione.

SoylentGreen – Opera propria, CC BY-SA 3.0 [link]

Dato che le onde deformano lo spaziotempo, significa che al loro passaggio deformano il tempo e lo spazio. Ed è proprio questa deformazione che può essere misurata per individuarle.

Come rilevare le onde gravitazionali
Per rilevare le onde gravitazionali è sufficiente misurare la deformazione dello spazio, ossia la deformazione delle distanze al passaggio dell’onda e confrontare questa deformazione con quello che ci si aspetta. Semplice, no? No.
Le onde gravitazionali sono segnali così deboli che deformano le distanze per meno di 1 miliardesimo di miliardesimo di metro. Bisogna quindi essere in grado di costruire un apparato estremamente sensibile e, soprattutto, isolato da altri disturbi elettromagnetici, termici, acustici o sismici, che sono ben più intensi. Serve poi uno strumento di misura che non si deformi insieme allo spazio quando passa l’onda, altrimenti sarebbe impossibile misurare la deformazione. Fortunatamente ne abbiamo uno: la velocità della luce è una costante universale e possiamo quindi usarla come “righello” per vedere se lo spazio si deforma oppure no. Ora vediamo come.

Advanced LIGO in Washington (Credit: MIT/CalTech LIGO)

LIGO è un’enorme antenna
Advanced LIGO è un apparato costruito per misurare le deformazioni dello spazio e captare quindi le onde gravitazionali. Si può dire che, essenzialmente, è un’enorme antenna: utilizzando dei principi fisici, riceve dei segnali. Ci sono due Advanced LIGO, uno in Louisiana e uno nello stato di Washington, a tremila chilometri di distanza.
Nella pratica LIGO è un interferometro di Michelson, simile a quello usato da Michelson e Morley nel 1887, ma molto più grande e ovviamente più complesso.
Funziona così: un raggio laser viene sparato contro uno splitter, quello rosso nell’immagine qui sotto. Uno splitter è un dispositivo ottico in grado di dividere il raggio in due fasci perpendicolari. Dallo splitter i due fasci percorrono due bracci lunghi quattro chilometri. Al termine di ogni braccio si trovano degli specchi – quelli verdi – che riflettono i fasci all’indietro. Ad un certo punto i due fasci laser si reincrociano nello splitter, si riuniscono in un unico fascio e vengono indirizzati verso un rilevatore – quello nero.

Credit: B. P. Abbott et al. Phys. Rev. Lett. 116, 061102 – Published 11 February 2016 DOI CC BY 3.0

Inizialmente il raggio laser è unico. Dallo splitter in poi, però, i due fasci viaggiano lungo percorsi diversi, perpendicolari tra loro. I percorsi sono tuttavia lunghi uguali e quando i due fasci si riuniscono, ricreano il raggio originale. Quando però uno dei due bracci è un po’ più lungo dell’altro, i fasci non ricreano il raggio originale, ma formano una figura di interferenza, che si nota quando due segnali sono sfasati tra loro o sono diversi e quindi si disturbano a vicenda. L’interferenza è un fenomeno che conosciamo tutti: è il cellulare che gratta le casse audio quando riceviamo un sms, un fulmine che altera il segnale tv, due onde nel mare che si incrociano.

interfrenza

La cosa interessante è che studiando le figure di interferenza possiamo ricostruire il segnale che le ha generate.

Cosa succede quando arriva un’onda gravitazionale
All’arrivo di un’onda gravitazionale lo spaziotempo si deforma e le distanze tra gli specchi – quelli verdi – cambiano. I due bracci quindi si accorciano o si allungano in base a come è fatta l’onda. Noi non ci accorgiamo di questa deformazione dello spazio perché anche noi siamo “immersi” nello spaziotempo: è la nostra realtà a deformarsi. Tuttavia il raggio laser viaggia alla velocità della luce, che è una costante universale. Se al passaggio di un’onda gravitazionale uno dei due bracci si allunga, allora il fascio che sta viaggiando in quel braccio deve fare più strada dell’altro. Quando i due fasci si ricongiungono hanno quindi percorso distanze diverse e creano una figura di interferenza.

Cosa ha visto LIGO 
LIGO ad un certo punto ha visto una figura di interferenza. Studiandola, gli scienziati hanno ricreato la forma dell’onda che l’ha generata. Eccola.

Credit: P. Abbott et al. Phys. Rev. Lett. 116, 061102 – Published 11 February 2016 DOI CC BY 3.0

Questa è l’onda gravitazionale che è stata misurata. È durata circa due decimi di secondo e ha deformato i bracci di LIGO – che sono lunghi 4 Km – solo di un millesimo di miliardesimo di miliardesimo di metro.

Cosa ci dice questo segnale (tanto)
Il segnale, come si vede anche a occhio, aumenta nel tempo sia l’ampiezza che la frequenza di oscillazione, per poi decadere bruscamente alla fine. La spiegazione più probabile per un segnale di questo tipo è che sia stato generato da due masse in collisione e in rotazione a circa 150 mila Km orari al secondo. Attraverso dei calcoli è stato stimato che la collisione sia avvenuta 1,3 miliardi di anni fa a più di 12 mila miliardi di miliardi di chilometri da noi, che la somma delle due masse coinvolte sia circa 70 masse solari (70 volte la massa del Sole) e che le due masse dovessero essere molto compatte e vicine, a circa 350 Km l’una dall’altra. Gli unici oggetti celesti previsti dalle nostre teorie che possono avere così tanta massa, ma ruotare così vicini sono due buchi neri. Inoltre, il decadimento così brusco dell’onda verso la fine del segnale è compatibile con la rapida formazione di un unico buco nero una volta che i due si sono scontrati. Ulteriori analisi hanno stabilito che le masse dei due buchi neri fossero rispettivamente 36 e 29 masse solari. La massa del buco nero in cui si sono fusi è 62 masse solari.
Notate: 36+29= 65, non 62. Dove sono finite le 3 masse solari mancanti? La massa che manca si è trasformata in energia, sotto forma di onde gravitazionali. Il processo però è stato così rapido (meno di due decimi di secondo) che la potenza emessa è pari alla maggiore della potenza di tutte le stelle visibili nell’universo.
Come se tutto ciò non bastasse, questa rilevazione è anche la prima prova diretta dell’esistenza di sistemi binari di buchi neri.

È valido il risultato?
Rilevare un segnale così debole è tecnicamente molto difficile. È stato fatto un enorme lavoro per amplificare il segnale e sopprimere i disturbi. Il raggio laser viene potenziato con alcuni stratagemmi da una potenza di 20 Watt a 100 mila Watt, gli specchi sono isolati dal rumore sismico e sono costruiti con materiali particolari per diminuire le oscillazioni termiche e tutti i componenti sono montati su impalcature in ultravuoto per isolarli dalle vibrazioni. Ma nonostante tutti gli accorgimenti, potremmo chiederci: è valido il risultato?
Siamo piuttosto certi che lo sia. Innanzitutto il segnale è stato rilevato da entrambi i LIGO, a pochi millisecondi di distanza, come se l’onda fosse arrivata prima in Washington e poi in Louisiana e il ritardo di misura è compatibile con la propagazione di un’onda gravitazionale. Il segnale, poi, è così forte che è stato rilevato già sui dati in tempo reale, ossia attraverso le analisi preliminari, che sono meno approfondite di quelle fatte a posteriori ed ha una confidenza maggiore di 5 sigma, che è un modo statistico per dire che, per carità, potrebbe essere un falso allarme, ma un falso allarme come questo accade una volta ogni 203 mila anni.
Inoltre il segnale è arrivato il 14 Settembre scorso. Da allora fino ad oggi gli scienziati che collaborano al progetto hanno controllato i dati e testato la risposta dell’antenna ai disturbi esterni. La procedura è così serrata che nella collaborazione esistono alcune persone che possono inserire all’insaputa di tutti gli altri dei falsi segnali. È accaduto in passato: erano tutti pronti alla conferenza stampa, ma si trattava di un’esercitazione. Per questo i membri del progetto devono rispettare un vincolo di segretezza. Inoltre è bene sapere che alla collaborazione LIGO partecipano più di mille ricercatori divisi in quattro continenti. Questo significa che il risultato è già stato abbondantemente sottoposto al processo di revisione scientifica – chiamato peer review – ancor prima della pubblicazione.

Gli amici di LIGO 
I due Advanced LIGO non sono gli unici rilevatori di onde gravitazionali. Ne esistono altri: GEO600 e VIRGO ad esempio. VIRGO si trova Pisa, ha caratteristiche simili a LIGO e dovrebbe essere presto attivato dopo alcuni miglioramenti, mentre GEO600 non è ancora abbastanza sensibile per rilevare eventi di questo tipo.
eLISA è invece un rilevatore spaziale che verrà lanciato in orbita nel 2034. Oggi in orbita c’è Lisa Pathfinder, una missione test per collaudare le tecnologie necessarie a eLISA.
Tutti questi rilevatori stanno creando poco a poco una rete online, in modo da poter analizzare insieme i dati rilevati.

La dimensione di quello che è accaduto
Si tratta di una scoperta epocale. Le onde gravitazionali sono state teorizzate da Einstein 100 anni fa. Per trovarle sono serviti anni di ricerca, mille scienziati, 103 istituti coinvolti e milioni di finanziamenti. Uno sforzo scientifico e tecnologico impressionante. Chicca: la prima validazione del segnale come probabile onda gravitazionale è stata fatta dall’Università di Trento in collaborazione con l’Albert Einstein Institute di Hannover. Trovate qualche dettaglio negli approfondimenti.

Pillole della settimana
Alcune notizie di questi giorni, brevi.

Lisa Pathfinder ha liberato le masse di prova
Lisa Pathfinder è una missione spaziale per testare le tecnologie necessarie per l’esperimento eLISA, un rilevatore di onde gravitazionali simile a LIGO e VIRGO, ma con caratteristiche diverse e che verrà posizionato nello spazio e non sulla Terra. Lisa Pathfinder ha raggiunto la sua destinazione, un punto del sistema solare chiamato L1, e questa settimana ha rilasciato le masse di prova, che durante il lancio erano state fissate con dei fermi. Le masse di prova sono dei cubi di oro platino di 4.5 cm e hanno lo stesso ruolo degli specchi nell’esperimento LIGO. Tra una ventina di giorni potranno cominciare i test scientifici.

Ciao ciao, Philae
Philae, il lander che si trova sulla cometa 67P/Churyumov-Gerasimenko e che era finito in una zona d’ombra, ricoperto di polveri, non si sveglierà più. I tentativi di rianimarlo sono falliti, ha le pile scariche e non c’è più niente da fare. Ci lascia comunque un po’ di dati da analizzare.

Astrosamantha, al cinema
L’1 e il 2 marzo (e solo in quei giorni) sarà al cinema il film sugli scorsi tre anni di vita dell’astronauta Samantha Cristoforetti, la prima donna italiana nello spazio. Potete prenotare il biglietto online. Qui il sito del docufilm, qui il trailer. Consiglio: andateci.

Per approfondire
– Il ruolo dei ricercatori italiani nella scoperta
– La storia dei rilevatori di onde gravitazionali, di Licia Troisi
– La conversione in onde sonore del segnale rilevato da LIGO
– La conferenza stampa di Giovedì scorso, su youtube (inglese)
– Un video di Scientific American su come funziona LIGO (inglese)
– Un video dell’Istituto italiano di Astrofisica (INAF)
– Marco Drago, l’italiano che per primo ha visto il segnale, qui in italiano, qui in inglese
– L’articolo scientifico sulla scoperta, pubblicato su Physical Review Letters
– La scoperta, raccontata come una storia di Paolo Calisse

I buchi neri, LIGO e le onde gravitazionali

La settimana scorsa abbiamo parlato della Relatività e siamo pronti a capire cosa sono i buchi neri. Qui trovate le scorse newsletter, qui la pagina facebook e qui l’account twitter di Space break.
Oggi però è anche un giorno importante per la fisica. Forse sono state rilevate per la prima volta le onde gravitazionali e c’è un’attesa conferenza stampa oggi pomeriggio.
Se vi piace questa newsletter potete farla conoscere a un amico inoltrando la mail o suggerendogli di iscriversi.

Di cosa parliamo oggi
– cosa sono i buchi neri
– vedere i buchi neri (ma esistono davvero?)
– forse LIGO ha rilevato le onde gravitazionali

Cosa sono i buchi neri
Come abbiamo detto l’altra volta, secondo la Relatività l’universo “poggia” – per così dire – su una struttura intangibile chiamata spaziotempo che possiamo immaginare come un lenzuolo steso. La presenza di un corpo, come ad esempio un pianeta, una stella, una galassia o un comodino deforma il lenzuolo creando delle conche. Quando gli oggetti finiscono vicino a queste conche, ci cadono dentro come in questa animazione (si ingrandisce cliccando).

bending2
La gravità quindi non è considerata una forza vera e propria, ma l’effetto di una deformazione geometrica dell’universo. È una descrizione strana, ma incredibilmente efficace e in accordo con gli esperimenti.
Abbiamo anche detto che pure i raggi di luce, che si spostano seguendo la griglia dello spaziotempo, cadono in queste conche e il loro percorso viene deviato dalla curvatura.
Più un corpo ha massa, più la sua conca è profonda, più facilmente devia le traiettorie degli altri corpi e della luce. Quindi la conca fatta dal Sole è più profonda di quella fatta dalla Terra, che è più profonda di quella fatta da una mongolfiera, che è più profonda di quella fatta da una pulce.
Per chi si è perso e per chi non c’era, rimando alla scorsa newsletter.

La velocità di fuga e il raggio di Schwarzschild
Per non cadere in una conca, un oggetto deve superare la cosiddetta velocità di fuga. La velocità di fuga è insomma la velocità necessaria per sfuggire alla gravità di un pianeta o di una stella, senza caderci addosso. Ad esempio sulla superficie della Terra la velocità di fuga è pari a 40’320 Km orari. Più ci si allontana dalla Terra però, meno si sente la gravità e la velocità di fuga diminuisce: a 9 mila chilometri dalla superficie, la velocità di fuga è 25’560 km orari. Quando mandiamo un oggetto nello spazio utilizziamo dei razzi che accelerano fino alla velocità di fuga e che possono poi viaggiare senza propulsione.
Anche la luce, per riuscire a sfuggire a una conca gravitazionale, deve superare la velocità di fuga. Tuttavia di solito non è un problema: la velocità della luce nel vuoto è enorme: circa 300’000 Km al secondo. E infatti riusciamo a mandare segnali luminosi nello spazio senza preoccupazioni.
Esiste però una distanza dai pianeti o dalle stelle, chiamata raggio di Schwarzschild, entro la quale anche la luce rimane intrappolata (la parola “raggio” va intesa in senso geometrico, come il raggio di un cerchio o di una bicicletta). Quale sarebbe questa distanza nel caso della Terra? Per la Terra – la cui massa è quasi 6 milioni di miliardi di miliardi di Kg – il raggio di Schwarzschild è poco più di 8 millimetri, per la precisione 8,869 millimetri. Cosa significa? Significa che se tutta la massa della Terra fosse compressa in una pallina con un raggio, supponiamo, di 8 millimetri, una volta arrivata a una distanza inferiore o uguale a 0,869 millimetri dalla superficie della Terra, anche la luce non potrebbe più sfuggire. E poiché nessun corpo può andare più veloce della luce, nulla può uscire dal raggio di Schwarzschild.
Fortunatamente non è così: la Terra non è condensata in una pallina piccolissima e il raggio di Schwarzschild, nel nostro caso, non c’è. Questo ci permette di mandare segnali elettromagnetici nello spazio senza problemi.
Cosa accade però quando una grande quantità di massa, per qualche motivo, si compatta in una pallina piccolissima?

I buchi neri non sono buchi
Quando una grande massa si compatta in un volume piccolo lo spaziotempo si deforma molto, ossia la conca si fa sempre più profonda, come in questa immagine.

bh2

Perciò, a parità di distanza dalla pallina, la curvatura dello spaziotempo, ossia la gravità, diventa sempre più forte e la velocità di fuga necessaria per sfuggire dalla buca è sempre più alta.
Se la pallina in cui è compattata la materia è estremamente piccola allora ha senso parlare del raggio di Schwarzschild – la distanza entro la quale nemmeno la luce può sfuggire. Alla distanza prevista dal raggio di Schwarzschild si crea una superficie sferica chiamata orizzonte degli eventi, qui rappresentata da quel semicerchio nero.

bh3

Tutti gli eventi che accadono dentro l’orizzonte degli eventi, ossia entro il raggio di Schwarzschild, non possono essere osservati da fuori. Questo accade perché nemmeno la luce può uscire: da quel punto in poi un osservatore esterno vede solo una sfera nera e nulla più. Questo è il buco nero.
Come avete capito, però, non è propriamente un buco, ma una parte di universo da cui nulla può uscire e che non possiamo osservare.

Come vedere i buchi neri, se esistono
I buchi neri quindi non si possono vedere per un motivo molto semplice: sono neri. Quando osserviamo il cielo riusciamo a vedere tutti gli oggetti che emettono onde elettromagnetiche: luce visibile, ad esempio, ma anche raggi infrarossi, ultravioletti, segnali radio e così via. Tutti questi segnali viaggiano alla velocità della luce, raggiungono la Terra e possono essere captati dall’occhio umano o da delle antenne. I buchi neri, però, “mangiano” tutto, anche questi segnali, e non ne emettono. Come facciamo allora a sapere che esistono? E come possiamo vederli? (Bonus: in realtà crediamo che i buchi neri possano emettere qualcosa – la radiazione di Hawking – ma ne parleremo un’altra volta)

Cercare cosa manca
Dato che non possiamo vederli direttamente, un metodo per cercare i buchi neri è puntare un telescopio dove si crede che ci possa essere un buco nero e vedere se manca qualcosa. Secondo le teorie moderne, al centro di ogni galassia si trova un buco nero supermassiccio. Negli anni novanta è stato quindi puntato un telescopio al centro della nostra Galassia, la Via Lattea. Dopo anni di osservazione, ecco cosa è stato visto (si ingrandisce cliccando).

vialatteabh
La stella segnata dal tracciato giallo si chiama S2 e sta girando intorno a qualcosa che non si vede. Per dare un’idea di quanto veloce stia andando, il righello in alto a destra (10 giorni luce) equivale a 259 miliardi di chilometri. Cosa c’è lì al centro? Dai calcoli dell’orbita si è stimato che l’oggetto misterioso attorno al quale S2 sta girando ha una massa pari a 3,7 milioni di Soli. Secondo le teorie moderne un oggetto così grande che non emette radiazione può essere solo un buco nero.
Gli astronomi hanno trovato evidenze simili anche al centro di altre galassie, sempre studiando il moto del materiale che orbita attorno al loro centro.

Cercare cosa scompare
Certo i buchi neri non si trovano solo al centro delle galassie: nulla vieta che ce ne siano altri da altre parti. Per trovarne bisogna essere molto fortunati – osservando per caso fenomeni spiegabili soltanto dalla presenza di un buco nero – oppure usare un po’ di astuzia e osservare le supergiganti rosse.
Una supergigante rossa è una stella che ha quasi completato il suo processo di fusione ed è “in fine vita”. Una volta terminati i processi di fusione può esplodere e diventare una supernova oppure può formare un buco nero. Gli astronomi da tempo osservano con attenzione decine di supergiganti rosse. L’idea è semplice: se improvvisamente scompaiono, potrebbe essersi formato un buco nero.
È quello che è accaduto a un paio di stelle l’anno scorso. Un attimo prima c’erano, un attimo dopo non c’erano più. Non è detto che siano diventate dei buchi neri, però. Le stelle potrebbero avere una luminosità molto variabile o potrebbero essere finite dietro un ammasso di polveri e detriti. Non possiamo fare altro che continuare ad osservarle e pazientare.

LIGO ha rilevato le onde gravitazionali, si dice
LIGO è un importante esperimento pensato per rilevare le onde gravitazionali. È formato da due rilevatori – uno in Lousiana e uno nello stato di Washington – che funzionano come delle antenne.

LIGO

Advanced LIGO, in Washington (Credit: MIT/CalTech LIGO)

Nella prossima newsletter parleremo delle onde gravitazionali. Per ora ci accontentiamo di sapere che sono delle increspature nello spaziotempo predette da Einstein ormai cento anni fa, che quasi tutta la comunità scientifica crede nella loro esistenza e che sono molto sfuggenti. Chi vuole saperne un po’ di più può guardare questo video su youtube, attivando i sottotitoli in italiano.
Da tempo si mormora che LIGO abbia captato qualcosa di interessante, ma le voci si sono fatte più forti da quando lo staff di LIGO (composto da circa mille collaboratori sparsi in tutto il mondo) ha invitato tutta la comunità scientifica a una conferenza stampa per “fornire aggiornamenti sulla ricerca delle onde gravitazionali”.
Se LIGO avesse trovato le onde gravitazionali sarebbe una notizia epocale anche se, ricordo, i dati dovranno passare il vaglio della comunità scientifica per una conferma definitiva. Ciò che renderebbe comunque molto promettente la possibile scoperta è che i dati di LIGO sono analizzati da molti gruppi di ricerca che partecipano alla collaborazione scientifica. L’appuntamento per la conferenza stampa è oggi 11 Febbraio alle 16:30. Uno streaming sarà disponibile su youtube. Seguite la pagina facebook per aggiornamenti. Se riesco faccio un livetweet su twitter.

Per approfondire
– La prima evidenza scientifica della relatività generale
– Cosa sono i micro buchi neri
– E interstellar? Un bel video di Rai Scuola

La Relatività Generale e le missioni su Marte, un giorno

Come promesso oggi parliamo della Relatività Generale, la parte della Teoria di Einstein che considera anche la gravità. La scorsa mail è stata corposa, oggi ci andiamo piano.
Se avete curiosità potete scrivermi a spacebreak [at] francescobussola.it

Di cosa parliamo
– la Teoria della Relatività Generale
– pillole della settimana

La Teoria della Relatività Generale
Come abbiamo visto la volta scorsa la Relatività Speciale è basata su poche buone idee:
1 – Le leggi fisiche sono le stesse per osservatori con velocità diverse;
2 – La velocità della luce nel vuoto è una costante, ed è uguale per ogni osservatore;
3 – Lo spazio e il tempo non sono più concetti distinti, ma sono fusi in un unico concetto chiamato spaziotempo;
4 – Non valgono più le leggi inventate da Galileo. Al loro posto ci sono delle nuove leggi, chiamate trasformazioni di Lorentz che “mescolano” lo spazio e il tempo.
Le conseguenze di queste idee sono interessanti e inaspettate:
– La misura delle distanze è relativa, ossia cambia in base alla velocità dell’osservatore;
– Anche la misura degli intervalli di tempo è relativa.
Questi due fenomeni, chiamati contrazione delle lunghezze e dilatazione del tempo, accadono veramente e sono stati ampiamente verificati dagli esperimenti.
Inoltre ci sono altre conseguenze, come ad esempio la famosa legge E=mc2 o il fatto che nessun corpo può raggiungere e superare la velocità della luce.
Per chi si è perso e per chi non c’era, qui c’è la newsletter della settimana scorsa.

Manca la gravità
Nella Relatività Speciale manca però un ingrediente, la gravità. Tutta la Teoria è infatti valida quando gli effetti della gravità sono trascurabili o non presenti: è quindi un modello, una semplificazione utile in alcuni casi, ma che non dice nulla a proposito della forza di gravità, che solitamente è descritta da Newton. Ma sappiamo anche che Newton non funziona. Che si fa? Non potremmo accontentarci di avere un modello che in qualche modo funziona, magari correggendo un po’ la teoria di Newton giusto per far tornare i conti? Perché bisogna per forza includere la gravità nella Relatività?  Essenzialmente per completezza. Ai fisici piace cercare delle leggi semplici che descrivano la più vasta gamma di fenomeni naturali. Una teoria sul movimento dei corpi, come è la Relatività, che non descrive la gravità – il fenomeno fisico che conosciamo da più tempo – è in un certo senso “zoppa”.
Comunque sia, in una delle prossime mail vi parlerò del paradosso dei gemelli e sarà evidente che in effetti nella Relatività Speciale si nota che manca qualcosa.

Come introdurre la gravità
Abbiamo detto tempo fa che la forza di gravità, per Newton, dipendeva dalla distanza tra i corpi in gioco. Siccome però per Einstein la misura della distanza è un concetto relativo, quella legge non va più bene. Come si può introdurre perciò la gravità nella Relatività?
Per farlo dobbiamo ricordarci di come Einstein descrive lo spazio e il tempo: non sono entità separate, ma sono unite in un unico concetto chiamato spaziotempo. Lo spaziotempo è in sostanza una specie di struttura su cui poggiamo e senza di essa non ci sarebbe l’universo.
La faccio semplice. Provate a immaginare un universo completamente vuoto, senza galassie, stelle, pianeti, polveri. Ecco, quello sarebbe lo spaziotempo descritto dalla Relatività Speciale. Dal punto di vista geometrico possiamo pensarlo come un lenzuolo steso orizzontalmente. Ogni punto del lenzuolo indica un evento, ossia un punto dello spazio ad un certo istante di tempo. In ogni punto però non accade niente e, come detto, non c’è niente. Questo è il motivo per cui non c’è gravità.
Cosa accade però quando appoggiamo una palla sul lenzuolo? Il lenzuolo ovviamente fa una conca dove viene messa la palla, no? Ecco, questo è l’effetto della presenza di un pianeta (o di una stella, o di un qualsiasi corpo) sullo spaziotempo: la struttura su cui “poggia” il corpo si deforma. Lo spaziotempo quindi non è più piatto, come poco prima, ma è curvo. Ovviamente ogni pallina che appoggiate sul lenzuolo – sia essa una stella, un pianeta, un asteroide, un uomo, un gatto o un temperamatite – curverà lo spaziotempo. Più l’oggetto è grande (o meglio, più la sua massa è grande), più la conca sarà profonda. Se poi l’oggetto si muove, la conca si sposterà insieme ad esso.
Per capire cosa c’entra questo con la gravità basta immaginare cosa accade a una pallina quando finisce nella conca di un’altra pallina, come nella seguente animazione.


Come vedete quando una pallina finisce nella conca di una pallina molto più pesante, ci cade dentro. Vedete il movimento che fa? Sembra quello di un asteroide che cade su un pianeta. La curvatura dello spaziotempo dunque è il modo con cui viene descritta la gravità nella Teoria della Relatività.

Perché non la vediamo?
Non vediamo la curvatura per il fatto che lo spaziotempo non è una struttura tangibile. Il nostro punto di vista è molto simile a quello della telecamera in verticale nell’animazione: a noi lo spaziotempo appare “piatto”. Ci accorgiamo però degli effetti causati della curvatura.

Quali sono gli effetti della curvatura?
Beh, innanzitutto vediamo i corpi che si attirano: i pianeti orbitano attorno al Sole, gli oggetti cadono verso la Terra e così via. Insomma, percepiamo la gravità. Ma ci sono altri effetti. Se lo spaziotempo si piega, pensateci, significa che lo spazio e il tempo vengono deformati e le loro misure cambiano. Non stiamo parlando della dilatazione del tempo e della contrazione delle lunghezze viste l’altra volta. Parliamo di ulteriori effetti aggiuntivi dovuti alla gravità ed esistono delle formule per descriverli. L’esperimento di Hafele e Keating di cui abbiamo parlato dimostrò anche questi effetti aggiuntivi.
Se siete scettici fate bene – lo scetticismo in mancanza di prove è una buona abitudine – e soprattutto siete in buona compagnia. Negli anni ’70 il Dipartimento di Difesa statunitense cominciò a costruire il sistema GPS, il famoso sistema di localizzazione basato sui satelliti. Per funzionare correttamente i satelliti dovevano essere sincronizzati, altrimenti avrebbero segnalato in maniera sfasata le posizioni. All’epoca i fisici spiegarono ai militari che per sincronizzare i satelliti bisognava tenere conto delle correzioni agli orologi previste sia dalla Relatività Speciale che da quella Generale. I militari non ci credevano. Indovinate chi aveva ragione.

C’è altro?
Sì, una cosa importantissima e difficile da credere. Abbiamo visto che le palline quando cadono in una buca ci finiscono dentro girando intorno al centro. E che questo è come la Relatività descrive la gravità. Ma c’è una cosa in più: anche ai raggi di luce accade a stessa cosa: I raggi di luce infatti si propagano seguendo la griglia dello spaziotempo. Quando questa si deforma, però, si modifica anche il loro percorso. Perciò quando un raggio di luce passa vicino a un pianeta, a una stella o a una galassia, modifica la sua traiettoria, più o meno come in questa immagine.

light_bending
Questo fenomeno si chiama lente gravitazionale. Vi spiego l’immagine. La stella, quella in alto a destra, si trova nascosta dietro il Sole e sarebbe impossibile vederla dalla Terra. La sua luce però finisce nella conca gravitazionale del Sole, perciò il raggio luminoso curva la propria traiettoria e raggiunge comunque la Terra (linea gialla). Noi quindi riusciamo a vedere la stella, ma la vediamo come se fosse più a sinistra (linea rossa). Insomma, grazie a questo effetto possiamo vedere dei corpi celesti nascosti dietro qualche ostacolo.
Volete una prova? Questa foto è la famosa croce di Einstein, un corpo celeste nella costellazione di Pegaso. Quella al centro è una Galassia e le luci accanto sono quattro immagini apparenti di un unico Quasar che si trova dietro la Galassia. La luce emessa dal quasar passa in fianco alla Galassia, curva la sua traiettoria e ci raggiunge comunque. Einstein postulò l’esistenza di tali oggetti nel 1915, sessantacinque anni prima della loro scoperta.

lente
Pillole
Alcune notizie di questi giorni, brevi.

I funghi sulla ISS
Sulla Stazione Spaziale Internazionale sono stati coltivate per 18 mesi delle cellule di alcuni funghi particolari che solitamente crescono in Antartide e che sono considerati buoni candidati per “colonizzare” l’ambiente marziano. Li vedete nell’immagine sotto, dove c’è la freccia. Più del 60% delle cellule dei funghi sono sopravvissute, mantenendo stabile il proprio DNA dando prova che la vita può sopravvivere anche in situazioni estreme. Qui gli approfondimenti.

L’esperimento Expose-A (Credit: NASA ESA, ISS)

La navicella Orion
L’Orion MPCV è un veicolo spaziale con equipaggio attualmente in fase di sviluppo da parte della NASA che sarà impiegato nell’esplorazione umana degli asteroidi in vista di un futuro sbarco su Marte. Nonostante i tagli ai finanziamenti il progetto continua. In questi giorni Orion è stato trasportato al Kennedy Space Center a Cape Canaveral con il fighissimo aereo Super Guppy per l’assemblaggio finale. Il prossimo lancio test senza equipaggio è previsto nel 2018.

L’aereo Super Guppy, pronto a trasportare Orion (Credit: NASA)

Il Lussemburgo spara (molto) alto
Il governo del Lussemburgo ha annunciato un ambizioso progetto per diventare “il centro europeo nell’esplorazione e nell’utilizzo delle risorse spaziali”. L’obiettivo è quello di sviluppare le tecnologie e stabilire un quadro normativo per poter estrarre minerali dagli asteroidi. Chissà.

Una passeggiata spaziale
Ieri gli astronauti Russi Malenchenko e Volkov hanno fatto una passeggiata spaziale per attività di manutenzione della ISS. Durante la passeggiata hanno recuperato l’esperimento europeo Expose-R2, un laboratorio di campioni biologici simile a quello utilizzato per i funghi di cui abbiamo parlato. Ecco Volkov al lavoro.

L’astronauta Volkov durante la passeggiata spaziale (Credit: NASA, ISS)

Feedback
Ti è piaciuta questa mail? Falla conoscere a un amico.

Per approfondire
– Il fenomeno della lente gravitazionale rivisto a Dicembre dello scorso anno
– La storia delle lenti gravitazionali (inglese)
– La Relatività Generale, in inglese, coi disegnini (video)
– Gli ultimi appunti di Einstein, scritti poco prima di morire
– Cosa sono le onde gravitazionali (fumetto e video in inglese)

1 2 3