Tag: BEAM

Scoperta una quinta forza?

Ciao! Scusate per l’assenza di questi giorni ma a causa di un infortunio ho dovuto sospendere improvvisamente le newsletter. Cerco di riprendere oggi, ma è possibile che faccia qualche altra pausa perché non riesco a scrivere troppo alla tastiera. Portate pazienza per un po’. Chiedo anche scusa a chi mi ha scritto e sta aspettando da tempo una mia risposta: pian piano recupero.
Oggi faccio un riassuntone delle notizie di questi giorni e dalla prossima newsletter ricomincio con le lezioni.

Sondaggi
A proposito delle lezioni, avevo lanciato un sondaggio su Twitter per decidere l’argomento della prossima newsletter, ma poi non vi ho scritto, quindi la maggior parte di voi non lo ha visto. Lo ripropongo oggi (eccolo qui). Dentro ci trovate anche il primo video musicale registrato nello spazio. C’è tempo fino a giovedì per votare.
Qui invece trovate un sondaggione su Space Break. Mi piacerebbe sapere che ne pensate della newsletter. Ci sono cinque domande e dura un minuto. Giuro.

Di cosa parliamo oggi
– Lisa Pathfinder funziona
– L’espansione di Bigelow
– Scoperta una quinta forza naturale?
– Plutone, come non l’avete mai visto
– Come si tara un esperimento come LIGO
– Nuovo lancio di SpaceX
– Gli tsunami su Marte

Lisa Pathfinder
Lisa Pathfinder è una sonda test dell’Agenzia Spaziale Europea, necessaria per collaudare le tecnologie necessarie a costruire un rilevatore di onde gravitazionali nello spazio. All’interno della sonda ci sono due masse di prova (due cubi di metallo di 2 kg), distanti 38 centimetri e in caduta libera, il che significa che fluttuano all’interno di Lisa restando quasi immobili l’una rispetto all’altra. Con una conferenza stampa è stato annunciato che la missione ha raggiunto il suo obiettivo: le masse accelerano pochissimo – la loro accelerazione relativa è più piccola di dieci milionesimi di un miliardesimo della gravità della terra – e le forze che le disturbano sono state identificate con una precisione superiore alle aspettative. La missione ha quindi dimostrato la fattibilità tecnologica della rivelazione delle onde gravitazionali nello spazio (il progetto per rivelarle si chiama eLISA), restituendo un risultato di sensibilità persino superiore alle aspettative.

L’espansione di Bigelow
Avevamo parlato di BEAM (Bigelow expandable activity module), il modulo gonfiabile che era stato installato con successo sulla ISS (qui il video). I moduli gonfiabili potrebbero in futuro sostituire i moduli rigidi in cui vivono gli astronauti nello spazio, perché sono leggeri e poco voluminosi, ma sono anche più delicati. Dopo aver effettuato le operazioni di gonfiaggio, gli astronauti Jeff Williams e Oleg Skripochka hanno aperto per la prima volta il portello del modulo e ne hanno verificato la tenuta stagna. Giusto per dare un’idea delle competenze degli astronauti, eccoli mentre rimpiazzano una giunzione mancante del sistema di aerazione di BEAM come farebbe MacGyver.
Il modulo verrà monitorato anche nelle prossime settimane, anche grazie all’utilizzo di vari sensori.

Scoperta una quinta forza? Andiamoci cauti
Si fa un gran parlare della possibile scoperta fatta da un gruppo di ricercatori dell’istituto di fisica nucleare ungherese. Mentre effettuavano degli esperimenti per studiare la materia oscura, avrebbero trovato evidenze di una quinta forza fondamentale, che andrebbe ad aggiungersi alle quattro per ora conosciute. I risultati di questi esperimenti sono ormai vecchi di qualche mese, ma recentemente sono stati rielaborati da un gruppo di ricerca statunitense e apparentemente non sono in conflitto con nessun esperimento precedente. Vale la pena essere cauti. I dati potrebbero essere esatti, ma non la loro interpretazione. Servirà condurre altri esperimenti per capire se è stata scoperta una nuova forza fondamentale oppure no.

Plutone, come non l’avete mai visto
La sonda New Horizon ha fatto un sorvolo ravvicinato di Plutone, scattando una serie di foto con una risoluzione di 80 metri per pixel, ora raccolte in un’unica strip. Il collage di foto attraversa vari tipi di terreno: aree colpite da crateri, terreni ondulati, montagne, pianure, zone ricoperte di azoto ghiacciato in sublimazione e altopiani. L’immagine ad alta risoluzione è qui. Questo invece è il video.

Come si tara LIGO
L’esperimento LIGO, che ha rivelato qualche mese fa le onde gravitazionali, sfrutta dei principi piuttosto semplici di interferometria, ma utilizza tecnologie estremamente avanzate per ridurre i disturbi – il cosiddetto rumore (come funziona LIGO?). Come ogni strumento di laboratorio, anche LIGO deve essere tarato, cioè deve essere determinato il modo in cui lo strumento converte in un output il segnale che riceve. Ma come si tara uno strumento complesso come LIGO? Chi sa l’inglese ed è curioso trova la risposta qui.
A proposito di LIGO, sono state fatte delle analisi approfondite per determinare se le onde gravitazionali che abbiamo rivelato si comportano come previsto da Einstein. La risposta è sì. I dettagli qui.
Per finire, ecco un bel video dal TEDxVerona sulle onde gravitazionali. Quello che parla, con un po’ di emozione iniziale, è il prof. Giovanni Andrea Prodi, coordinatore dell’unità di ricerca Padova-Trento di Virgo, l’esperimento italiano che collabora con LIGO.

SpaceX rilancia
Il quarto lancio con rientro del razzo Falcon9 di SpaceX è andato a buon fine. Nuovo lancio il 15 Giugno, dalla base di Cape Canaveral, quando in Italia saranno le 4 del pomeriggio, per la messa in orbita di alcuni satelliti di telecomunicazione.

Gli tsunami su Marte
Delle ricerche finanziate dalla NASA indicano che il terreno costiero di Marte si è formato anche grazie a dei giganteschi tsunami, risalenti al periodo in cui su Marte era presente un oceano di acqua liquida. Le foto delle zone costiere interessate dagli tsunami sono nel tweet qui sotto (l’articolo in inglese si apre cliccando).

Gli orbitali atomici

Gli elettroni sono distribuiti attorno al nucleo degli atomi seguendo le leggi della Meccanica quantistica, in alcune aree chiamate orbitali atomici. È l’argomento di oggi.
Per il resto parleremo di una novità riguardante le onde gravitazionali, dei famosi punti luminosi di Ceres – il pianeta nano – e di altre notizie della settimana.

Di cosa parliamo oggi
– la funzione d’onda
– come è fatto un atomo?
– gli orbitali atomici
– pillole della settimana

La funzione d’onda
Parlando della Meccanica quantistica avevamo detto che non è possibile misurare contemporaneamente la posizione e la velocità delle particelle con precisione arbitraria. Meglio misuriamo la posizione di una particella, più incerta è la misura della sua velocità e viceversa. Non è un limite sperimentale, ma un confine dato alla nostra conoscenza dalla natura e viene chiamato principio di indeterminazione di Heisenberg (per chi si è perso e per chi non c’era, ne abbiamo parlato qui). Per questo in Meccanica quantistica viene usata una descrizione probabilistica dello stato fisico delle particelle: la funzione d’onda. La funzione d’onda ci dice qual è la probabilità di trovare una certa particella in un determinato stato fisico – ad esempio qual è la probabilità di trovarla in una certa posizione. Questa descrizione probabilistica del comportamento delle particelle ha avuto molto successo, anche se ci ha costretto a cambiare modo di pensare. Se mettiamo una pallina sul tavolo e usciamo dalla stanza, possiamo dire con certezza che la pallina è rimasta sul tavolo. Se poi la lanciamo per aria, possiamo calcolare il suo moto e predire con esattezza dove cadrà. Con le particelle non funziona così: non possiamo più dire, prima di effettuare una misura, dove è una particella, né possiamo sapere in anticipo quale sarà la sua traiettoria. Possiamo solo conoscere la probabilità di misurarla in un punto a una certa velocità.

Come è fatto un atomo?
La funzione d’onda è lo strumento giusto per studiare la struttura degli atomi. Prima però chiariamoci le idee: cos’è un atomo? Prima che fossero scoperte le particelle elementari si credeva che la materia fosse costituita da piccoli granelli chiamati atomi (àtomos = indivisibile). È effettivamente così. La materia è composta di atomi che differiscono tra loro per dimensione, forma e altre proprietà fisiche e che possono combinarsi per creare molecole e dunque diversi materiali. Però non sono veramente indivisibili, anzi. Un atomo è formato da tre tipi di particelle: protoni, neutroni e elettroni. I protoni hanno carica elettrica positiva, i neutroni non hanno carica elettrica e gli elettroni – che sono 1836 volte più leggeri dei protoni e molto più piccoli – hanno carica elettrica negativa. Agli inizi del Novecento i fisici credevano che i protoni (rossi, in figura) se ne stessero insieme ai neutroni (verdi) a formare il nucleo atomico – la parte centrale dell’atomo – e che gli elettroni (gialli) ruotassero intorno al nucleo un po’ come i pianeti ruotano attorno al Sole.

Atom

(Credit: Wikimedia Commons, CC BY-SA 3.0)

Questo schema non nasce a caso – la legge di Coulomb che regola l’attrazione tra cariche elettriche negative e positive è molto simile alla legge di gravitazione universale di Newton, che modella l’attrazione dei corpi celesti – e ha permesso di spiegare come è formata la materia.
Atomi con un numero equivalente di protoni, neutroni e elettroni sono atomi dello stesso elemento. Ad esempio gli atomi composti da 3 protoni, 4 neutroni e 3 elettroni sono atomi di litio, quella sostanza usata nelle batterie. Solitamente protoni e elettroni sono presenti nell’atomo in numero uguale e cambiando il numero di protoni, cambia l’elemento: l’idrogeno ha 1 protone, l’elio ne ha 2, con 8 si fa l’ossigeno, con 26 il ferro e così via. Cambiando il numero dei neutroni invece si formano i cosiddetti isotopi, ossia atomi dello stesso elemento ma con caratteristiche fisiche un po’ diverse. Per dire, il trizio è un isotopo dell’idrogeno che si ottiene aggiungendo due neutroni al nucleo dell’idrogeno. Ed è radioattivo.
Tuttavia i fisici hanno scoperto che gli atomi non possono essere fatti come un piccolo sistema solare – con il nucleo al centro e gli elettroni che orbitano intorno. Le leggi dell’elettromagnetismo di Maxwell infatti dicono che delle cariche elettriche che si muovono emettono energia sotto forma di onde elettromagnetiche. Gli elettroni quindi, ruotando come piccoli pianeti, dovrebbero emettere onde elettromagnetiche, perdere energia e, prima o poi, cadere sul nucleo atomico distruggendo l’atomo. Perché non accade?

Gli orbitali atomici
Non accade perché gli elettroni sono particelle che obbediscono alle leggi della Meccanica quantistica e non seguono una traiettoria come l’orbita circolare disegnata sopra. Se seguissero una traiettoria precisa, esisterebbe una formula matematica che predice dove si trova ogni elettrone e a che velocità sta viaggiando. Pensateci: studiando le orbite dei pianeti intorno al Sole, o dei satelliti attorno alla Terra, siamo in grado di calcolare dove si trovano e la loro velocità. Sappiamo però che, a causa del principio di indeterminazione di Heisenberg, non è possibile fare lo stesso per le particelle. L’idea stessa di orbita, quindi, non si può applicare al modello atomico: gli elettroni non seguono delle orbite ruotando attorno ai protoni e ai neutroni.
Eppure gli esperimenti hanno dimostrato che l’atomo è formato da due regioni, una più centrale e densa, fatta di protoni e neutroni, e una più esterna e diradata, in cui si trovano gli elettroni.

Per riuscire a descrivere questa struttura possiamo provare a studiare la funzione d’onda degli elettroni che si trovano attorno al nucleo, individuando quelle zone in cui è più probabile trovare gli elettroni, quando li cerchiamo. Le zone adiacenti al nucleo in cui è più probabile trovare gli elettroni sono chiamate orbitali atomici. Si chiamano così perché sostituiscono l’idea di orbita – non più utilizzabile.
L’orbitale dell’atomo più piccolo – l’idrogeno, che ha 1 protone, 1 elettrone e zero neutroni – è molto semplice: è una sfera che avvolge il nucleo atomico

orbitals

(Credit: Av haade – Own work, CC BY-SA 3.0)

e ci dice che in quella zona è c’è un alta probabilità di trovare l’elettrone dell’idrogeno. Per convenzione gli orbitali sono quelle aree in cui la probabilità di trovare l’elettrone è superiore al 95%. Significa quindi che l’elettrone potrebbe trovarsi anche fuori da quella zona, ma con una probabilità sempre più bassa man mano che ci si allontana.
L’idrogeno però ha una struttura molto semplice, perché ha un solo elettrone che ruota attorno a un protone.
Come si dispongono gli elettroni, quando sono più di uno?

Il principio di esclusione di Pauli
Le particelle, oltre ad avere una posizione, una velocità o una carica elettrica, possono avere anche altre proprietà fisiche. Una di queste è chiamata spin. Non ne parliamo oggi, perché è una cosa piuttosto complicata da spiegare, ma è importante citarlo perché anche gli elettroni hanno uno spin, che può assumere due valori: +1/2 o -1/2 (Non fate caso ai numeri o al loro significato). La cosa importante da sapere è che due elettroni con lo stesso spin non possono stare nello stesso orbitale. È una legge dettata dalla natura, conosciuta come principio di esclusione di Pauli: se in un orbitale c’è un elettrone con spin +1/2 e ce ne è un altro, quest’altro ha per forza spin -1/2. Quindi in un orbitale ci possono essere al massimo due elettroni.
Se attorno a un atomo ci sono più di due elettroni, questi si trovano per forza in orbitali diversi.
Esistono infatti molti tipi di orbitali, che vengono riempiti dagli elettroni seguendo un ordine particolare. I primi orbitali hanno queste forme strane.

orbitali

(Credit: Av haade – Own work, based on various sources, sketch NOT computer generated models, CC BY-SA 3.0)

Il primo orbitale a riempirsi è quello rosso, chiamato orbitale s, poi si riempiono gli orbitali gialli, detti p, poi quelli azzurri e così via. Per chi volesse approfondire la struttura atomica, gli orbitali e scoprire cosa sono i livelli energetici, lascio un link negli approfondimenti.

I legami chimici
Una cosa importante degli orbitali è che questi giocano un ruolo di primo piano nella formazione dei legami chimici tra gli atomi. Gli orbitali più esterni di due atomi, infatti, possono legarsi tra loro, mettendo in comune i loro elettroni. In questo caso nascono dei nuovi tipi di orbitali, chiamati orbitali molecolari. Non entriamo nel dettaglio. Chi è appassionato di chimica, trova un link negli approfondimenti.

Pillole della settimana
Alcune notizie di questi giorni, brevi.

Uno strano segnale forse proveniente dai buchi neri
Il 14 Settembre 2015, il Fermi Telescope della NASA ha misurato un lieve segnale proveniente dalla stessa regione di spazio da cui proveniva l’onda gravitazionale misurata da LIGO. Si tratta di un’emissione di raggi gamma ed è stata misurata meno di mezzo secondo dopo la rivelazione di LIGO. Potrebbe trattarsi di una coincidenza, anche se le probabilità che due segnali così importanti arrivino in un tempo così ravvicinato per puro caso è inferiore allo 0.2%. Nel breve video qui sotto è stata ricostruita la regione da cui provengono i due segnali. Questa misurazione potrebbe permetterci di capire meglio come funziona la fusione tra due buchi neri, ma soprattutto ci dimostra quanto è importante la triangolazione dei segnali. Per individuare l’esatta posizione di una sorgente di onde gravitazionali bisogna effettuare una triangolazione. Per fare una triangolazione servono tre “antenne”. Oggi ne abbiamo due – i due LIGO negli Stati Uniti. Quando anche Virgo, il rivelatore italiano, sarà attivo, sarà possibile localizzare nel giro di alcuni minuti l’origine delle onde gravitazionali e puntare tutti gli altri telescopi verso quel punto, per misurare altri tipi di radiazioni.


I punti luminosi di Ceres
La sonda Dawn, lanciata dalla NASA per raggiungere il pianeta nano Ceres e l’asteroide Vesta aveva individuato su Ceres dei punti molto luminosi, forse composti di ghiaccio esposto alla luce del sole. Non abbiamo ancora una risposta definitiva, ma nel frattempo abbiamo immagini di qualità sempre migliore, come questa immagine del cratere Haulani, ripreso da un’altitudine di 1470 km (i colori di questa foto non sono reali, ma evidenziano materiali di origine diversa. Si ingrandisce cliccando).

haulani

(Credit: Dawn/NASA)

Installato il modulo BEAM
Dopo essere stato lanciato con il Falcon 9, il modulo gonfiabile BEAM è stato installato con successo sulla Stazione Spaziale Internazionale. Il video dell’installazione si trova qui.

Analizzata della polvere interstellare
La sonda Cassini, realizzata dalla NASA con la collaborazione dell’Agenzia Spaziale Italiana, si trova in orbita intorno a Saturno. Cassini è dotata di uno strumento chiamato Cosmic Dust Analyzer, in grado di analizzare minuscoli granelli di polvere spaziale. Queste analisi hanno individuato per la prima volta delle polveri provenienti dall’esterno del Sistema Solare. Tutti i dettagli qui.

Feedback
Se vi piace la newsletter potete inoltrarla a un amico o suggerirgli di iscriversi.
Per scrivermi, mandate una mail a spacebreak [at] francescobussola.it

Per approfondire
– Il modello atomico a orbitali, spiegato con qualche dettaglio in più
– Gli orbitali molecolari

  (Credit: NASA/Goddard/Wade Sisler)

La teoria del tutto

I fisici sono spesso spinti dalla convinzione che la natura sia regolata da un sistema di leggi completo e coerente, in grado di spiegare tutti i fenomeni naturali: è la cosiddetta Teoria del tutto. Ma esiste davvero? Ne discutiamo oggi.
Nel frattempo SpaceX ce l’ha fatta: è riuscita a far atterrare verticalmente il Falcon 9 su una chiatta nell’oceano. Robe da matti.
Le newsletter sono caricate sul mio sito e su medium con qualche giorno di ritardo. Per chi vuole qualche curiosità e approfondimento in più, Space break ha anche una pagina facebook e un account twitter. Per scrivermi la mail è spacebreak [at] francescobussola.it

Di cosa parliamo oggi
– la gravità fa di testa sua
– la Teoria del tutto
– pillole della settimana

La gravità fa di testa sua
Le due grandi teorie fisiche utilizzate oggi per studiare la natura – la Meccanica quantistica e la Teoria della Relatività – non vanno molto d’accordo. Una spiega molto bene i fenomeni microscopici, il comportamento delle particelle, i legami chimici e la struttura della materia. L’altra descrive la dinamica e la meccanica dei corpi, anche per grandi masse e grandi velocità: ci permette di mandare satelliti in orbita, studiare l’universo e regolare orologi e gps. Dove però funziona una teoria, l’altra fallisce.
Negli anni è stata sviluppata una teoria, chiamata Teoria quantistica dei campi (Quantum field theory), che è riuscita a unificare la Meccanica quantistica con la Teoria della Relatività Speciale. Un’unificazione è sempre un grande risultato: avere una sola teoria per spiegare alcuni fenomeni naturali, anziché dover ricorrere a più modelli, semplifica i problemi concettuali ed evita di farsi domande come “perché dovremmo usare questo modello anziché l’altro?”. La Teoria quantistica dei campi ha ottenuto ottimi risultati ed è la teoria su cui si basano gli esperimenti del CERN, dove è usata per studiare i comportamenti quantistici delle particelle elementari a velocità relativistiche – ossia a velocità prossime a quelle della luce. L’unificazione però funziona con la Relatività Speciale, quella parte della Relatività che non si occupa della gravità. Al CERN infatti non si tiene conto dell’effetto della gravità della Terra, o del Sole o della Luna: sono forze troppo piccole per disturbare gli esperimenti.
Non abbiamo però una teoria che unifichi la Meccanica quantistica con la Teoria della Relatività Generale, ossia non abbiamo una teoria che descriva i comportamenti quantistici della natura in presenza di gravità. È chiaro che se vogliamo studiare l’universo non possiamo dimenticarci completamente della gravità. Ci piacerebbe inoltre sapere se la gravità stessa abbia un comportamento quantistico come le altre tre forze della natura. I fisici credono di sì.

Una legge per domarli
Una teoria in grado di unificare la Relatività e la Meccanica quantistica sarebbe quella che i fisici chiamano una Teoria del tutto, perché sarebbe potenzialmente in grado di spiegare tutti i fenomeni fisici, collegandoli insieme in maniera organica e coerente. Pensateci, non sarebbe bello che tutti i fenomeni fisici fossero spiegabili da un’unica elegante formula? O che le quattro forze della natura fossero diverse manifestazioni di un’unica forza, di cui ancora non conosciamo le caratteristiche?
La credenza che l’universo sia regolato da un’unica legge elegante ha ben poco di scientifico. È una pretesa bella e buona, un atto di fede, quasi. Tuttavia questa convinzione è stato lo stimolo principale dei fisici da quando si scoprì che l’elettricità e il magnetismo non erano fenomeni distinti, ma manifestazioni dello stessa forza naturale – la forza elettromagnetica – ed erano spiegabili da quattro semplici ed eleganti formule – le equazioni di Maxwell.

Le teoria del tutto
Ma esiste una Teoria del tutto? No, non ancora. Ci sono però alcune teorie che si sono candidate ad esserlo. La candidata più famosa è la Teoria delle stringhe. La Teoria delle stringhe – ne parleremo con più calma, un giorno – riesce a descrivere il Modello standard delle particelle, includendo la Relatività Generale. Sostiene che l’universo abbia 10 o 11 dimensioni – anziché 4.- e che le particelle siano composte da strutture unidimensionali in vibrazione – le stringhe. Ogni stringa potrebbe vibrare in modi diversi, dando origine a diversi tipi di particelle.
Purtroppo però la Teoria delle stringhe, dopo più di cinquant’anni dalla sua prima formulazione, non ha portato grandi risultati e alcune delle sue importanti predizioni continuano a non essere confermate dagli esperimenti. Inoltre alcune suoi aspetti, come l’esistenza stessa delle stringhe, non sono verificabili né falsificabili, cioè non possono essere testati con degli esperimenti.
Esistono comunque altre teorie, oltre alla Teoria delle stringhe, che potrebbero candidarsi a Teoria del tutto. La più nota è la cosiddetta Gravità quantistica a loop (Loop Quantum Gravity). Una delle caratteristiche principali di questa teoria è che prevede che lo spazio sia discreto, anziché continuo. Ricordate il lenzuolo che descriveva lo spaziotempo di Einstein? Anziché essere una superficie continua potrebbe essere una specie di rete intrecciata di piccoli oggetti chiamati “loop”. È però una teoria piuttosto giovane, ancora in fase di sviluppo ed è presto per dare un giudizio.
Un giorno magari parleremo più in dettaglio di queste teorie, ricordandoci però che, a differenza della Meccanica quantistica e della Relatività, non sono confermate dagli esperimenti.

Pillole della settimana
Alcune notizie di questi giorni, brevi.

SpaceX, che gran cosa
Dopo vari tentativi SpaceX, la compagna spaziale di Elon Musk, è riuscita a far atterrare il suo lanciatore Falcon 9 su una chiatta nell’oceano. Il Falcon è stato utilizzato per portare in orbita la capsula Dragon CRS-8, con un carico destinato alla ISS e avrebbe avuto carburante sufficiente per tornare sulla terraferma, ma SpaceX ha preferito tentare nuovamente l’atterraggio su chiatta. Comunque sia, oggi dobbiamo solo goderci questo video: è fantascienza che diventa realtà.chiatta

BEAM
Il lancio del Falcon era molto atteso anche per il carico che portava con sé. La capsula Dragon CRS-8 conteneva infatti un nuovo modulo abitativo per la ISS, chiamato BEAM (Bigelow Expandable Activity Module). BEAM è un modulo gonfiabile e dunque più leggero e meno ingombrante di quelli rigidi. L’installazione del modulo BEAM – nel video qui sotto vedete una simulazione – sarà effettuata sabato 16 aprile 2016 e sarà visibile in streaming a questo link dalle ore 11.30.

beam
Kepler
Kepler è un telescopio spaziale il cui scopo è la ricerca di pianeti simili alla Terra. Il 7 Aprile è stato scoperto che Kepler si trovava da circa 36 ore in modalità di emergenza, una modalità a bassa operatività, ma a grande consumo di carburante. Lunedì 11 la NASA ha però annunciato che Kepler è uscito dalla modalità di emergenza. Gli ingegneri stanno ora analizzando i dati del telescopio per capire cosa abbia causato il malfunzionamento.

Vele solari
Il fisico (e milionario) Yuri Milner ha presentato un progetto per raggiungere il sistema stellare Alpha Centauri in 20 anni. Il progetto, chiamato Breakthrough Starshot, prevede l’utilizzo di una piccola sonda lanciata al 20% della velocità della luce, utilizzando una vela solare. Non mi dilungo. Trovate un’ottima spiegazione qua.

Domande?
Per suggerimenti e domande scrivete a spacebreak [at] francescobussola.it
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.

Per approfondire
– la Teoria delle strighe, spiegata in due minuti
– il modulo BEAM e la storia dei moduli gonfiabili
– il lancio di SpaceX, nel dettaglio